克拉斯
腺癌
肺癌
外显子
癌
癌症研究
生物
突变
癌症
病理
结直肠癌
医学
内科学
基因
遗传学
作者
Yan Liu,Bingquan Wu,Hao Zhong,Pei Hui,Wei‐Gang Fang
出处
期刊:PubMed
日期:2013-01-01
被引量:19
摘要
EGFR and KRAS mutations correlate with response to tyrosine kinase inhibitors in patients with non-small cell lung carcinoma (NSCLC). We reported a hydrothermal pressure method of simultaneous deparaffinization and lysis of formalin-fixed paraffin embedded (FFPE) tissue followed by conventional chaotropic salt column purification to obtain high quality DNA for mutation analysis using PCR-base direct sequencing. This study assessed the feasibility of using this method to screen for exons 18-21 of EGFR and exon 2 of KRAS gene mutations in surgical resection and core needle biopsy specimens from 251 NSCLC patients. EGFR mutations were identified in 140 (55.8%) NSCLC patients (118 in adenocarcinoma, 11 in squamous cell carcinoma, 7 in adenocarcinoma and 4 in NSCLC-not otherwise specified), including four novel substitutions (L718M, A743V, L815P, V819E). EGFR mutations were frequently present in female patients (72 of 113, 63.7%) and NSCLC with adenocarcinoma component (125/204, 61.3%) with statistical significance. Twenty-one patients had multiple mutations at different exons of EGFR, in which seventeen patients had deletions in exon 19. KRAS mutations were found in 18 (7.2%) patients (15 in adenocarcinoma, 2 in squamous cell carcinoma and one in NSCLC-not otherwise specified), including an uncommon substitution G13C. Deparaffinization and lysis by hydrothermal pressure, coupled with purification and PCR-based sequencing, provides a robust screening approach for EGFR and KRAS mutation analysis of FFPE tissues from either surgical resection or core needle biopsy in clinical personalized management of lung cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI