亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The effects of ischemic preconditioning on parameters of athletic performance

冲刺 缺血预处理 医学 物理疗法 物理医学与康复 心脏病学 缺血
作者
Jon Griffin
链接
摘要

The benefit of ischemic preconditioning (IPC) within the area of cardiology is well established. However, there are potential benefits of IPC that may enhance sports performance, where IPC has been suggested to offer a small but practically significant ergogenic effect to predominantly aerobic fuelled exercise performance. Since De Groot et al. (2011) initial finding that a prior-exercise repeated dose of non-lethal occlusion-reperfusion (IPC) enhanced VO2max and maximal power output, speculated to be due to up-regulation of potassium ATP channels and ATP saving, a growing body of evidence has been accumulating regarding the effects of IPC across a range of exercise performances types and modalities (Table 2.1). The purpose of this dissertation was to assess the effect of, and elucidate the mechanisms underpinning, IPC as an exercise performance ergogenic aid. To accomplish this, the impact of the intervention was assessed using key variables including exercise performance, muscle oxygenation, and VO2 and muscle kinetics, during specific exercise modalities. Insight into the potential for ergogenic effectiveness was further expanded using a range of participant abilities. In study 1 (Chapter 4) we used recreationally active participants to assess the effectiveness of remote- and local-IPC on a repeated sprint exercise (RSE) protocol, where we found a significant attenuation of fatigue decrement with IPC. In study 2 (Chapter 5) we assessed the impact of IPC on an ecologically valid RSE protocol which reflected the pre-competition warm-up and in-competition movement demands of professional, Olympic level, Rugby 7s; we did not find any impact of IPC on the athlete’s performance or any other variable assessed. In study 3 (Chapter 6) we assessed IPC’s impact on semi-professional athletes during an 80-minute simulated team sport by measuring performance and VO2 and muscle kinetics using an ergometer based intermittent sprint protocol (ISE). The findings showed that IPC reduced work done across the 80-minutes, and positively impacted muscle kinetics during the 2nd 40-minutes where there was a faster oxygen extraction. In study 4 (Chapter 7), using recreationally trained participants and the 3-minute all-out test, it was demonstrated that IPC could significantly enhance critical power (CP) by ~3%, which was supported by a trend towards an increased O2 extraction; a simulation model lent further support to the suggestion that IPC could enhance aerobic contribution to exercise performance with a significant impact of IPC on performance as the aerobic contribution to performance was increased. Finally, in study 5 (Chapter 8) IPC’s impact on time-to-exhaustion above CP was assessed using recreationally trained participants, where no performance benefit was established, but we did demonstrate slower muscle kinetics suggesting enhanced mitochondrial efficiency. Collectively, we have demonstrated that IPC can induce acute functional changes in working skeletal muscle and enhance exercise performance. We have shown positive acute effects on the peripheral microvasculature and VO2 and muscle kinetics across a range of exercise modalities where O2 extraction was increased and/or up-regulation of mitochondrial processes, along with an attenuation of fatigue decrement in RSE and ISE, and an increase in the aerobic energy contribution to aerobic and anaerobic fuelled exercise. The novel findings in this dissertation highlight important physiological mechanisms that add to the current body of scientific literature regarding IPC as a potential ergogenic aid for sports performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shicheng完成签到,获得积分20
49秒前
1分钟前
Shicheng发布了新的文献求助10
1分钟前
1分钟前
樊伟诚发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
刻苦的长颈鹿完成签到,获得积分10
2分钟前
日拱一卒的蕊完成签到,获得积分20
2分钟前
完美世界应助交钱上班采纳,获得10
2分钟前
寻道图强应助maher采纳,获得30
3分钟前
3分钟前
金灶沐完成签到 ,获得积分10
3分钟前
江望雪完成签到 ,获得积分10
4分钟前
4分钟前
RED发布了新的文献求助10
4分钟前
李爱国应助Jeriu采纳,获得10
4分钟前
4分钟前
Jeriu发布了新的文献求助10
4分钟前
桐桐应助希勤采纳,获得10
4分钟前
Jeriu完成签到,获得积分10
4分钟前
5分钟前
5分钟前
交钱上班发布了新的文献求助10
5分钟前
5分钟前
交钱上班完成签到,获得积分10
5分钟前
TWT发布了新的文献求助10
5分钟前
Fonseca完成签到 ,获得积分10
5分钟前
平日裤子完成签到 ,获得积分10
5分钟前
李健应助一剑白采纳,获得10
5分钟前
科研通AI2S应助Fonseca采纳,获得10
6分钟前
zhl完成签到,获得积分10
6分钟前
TWT完成签到,获得积分10
6分钟前
6分钟前
蔚蓝晴空发布了新的文献求助10
6分钟前
蔚蓝晴空完成签到,获得积分10
7分钟前
自信的傲晴完成签到,获得积分10
7分钟前
Noob_saibot完成签到,获得积分10
7分钟前
Noob_saibot发布了新的文献求助30
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133938
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768648
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297291
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791