亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications

核酸 自愈水凝胶 寡核苷酸 DNA纳米技术 DNA 化学 纳米技术 生物物理学 材料科学 组合化学 聚合物 生物化学 高分子化学 有机化学 生物
作者
Jason S. Kahn,Yuwei Hu,Itamar Willner
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (4): 680-690 被引量:428
标识
DOI:10.1021/acs.accounts.6b00542
摘要

The base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology. Stimuli-responsive hydrogels undergoing signal-triggered hydrogel-to-solution transitions or signal-controlled stiffness changes attract substantial interest as functional matrices for controlled drug delivery, materials exhibiting switchable mechanical properties, acting as valves or actuators, and "smart" materials for sensing and information processing. The integration of stimuli-responsive oligonucleotides with hydrogel-forming polymers provides versatile means to exploit the functional information encoded in the nucleic acid sequences to yield stimuli-responsive hydrogels exhibiting switchable physical, structural, and chemical properties. Stimuli-responsive DNA-based nucleic acid structures are integrated in acrylamide polymer chains and reversible, switchable hydrogel-to-solution transitions of the systems are demonstrated by applying external triggers, such as metal ions, pH-responsive strands, G-quadruplex, and appropriate counter triggers that bridge and dissociate the polymer chains. By combining stimuli-responsive nucleic acid bridges with thermosensitive poly(N-isopropylacrylamide) (pNIPAM) chains, systems undergoing reversible solution ↔ hydrogel ↔ solid transitions are demonstrated. Specifically, by bridging acrylamide polymer chains by two nucleic acid functionalities, where one type of bridging unit provides a stimuli-responsive element and the second unit acts as internal "bridging memory", shape-memory hydrogels undergoing reversible and switchable transitions between shaped hydrogels and shapeless quasi-liquid states are demonstrated. By using stimuli-responsive hydrogel cross-linking units that can assemble the bridging units by two different input signals, the orthogonally-triggered functions of the shape-memory were shown. Furthermore, a versatile approach to assemble stimuli-responsive DNA-based acrylamide hydrogel films on surfaces is presented. The method involves the activation of the hybridization chain-reaction (HCR) by a surface-confined promoter strand, in the presence of acrylamide chains modified with two DNA hairpin structures and appropriate stimuli-responsive tethers. The resulting hydrogel-modified surfaces revealed switchable stiffness properties and signal-triggered catalytic functions. By applying the method to assemble the hydrogel microparticles, substrate-loaded, stimuli-responsive microcapsules are prepared. The signal-triggered DNA-based hydrogel microcapsules are applied as drug carriers for controlled release. The different potential applications and future perspectives of stimuli responsive hydrogels are discussed. Specifically, the use of these smart materials and assemblies as carriers for controlled drug release and as shape-memory matrices for information storage and inscription and the use of surface-confined stimuli-responsive hydrogels, exhibiting switchable stiffness properties, for catalysis and controlled growth of cells are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助蜘蛛侠采纳,获得10
2秒前
乐乐应助迷路的尔竹采纳,获得10
8秒前
Yygz314完成签到,获得积分10
8秒前
liuynnn完成签到,获得积分20
9秒前
webmaster完成签到,获得积分10
13秒前
NexusExplorer应助坩埚甘茶白采纳,获得10
16秒前
阳光迎夏完成签到 ,获得积分10
18秒前
18秒前
充电宝应助xuz采纳,获得10
20秒前
20秒前
益笙鸿老板完成签到 ,获得积分10
21秒前
SiboN完成签到,获得积分10
22秒前
张流筝完成签到 ,获得积分10
22秒前
22秒前
高兴可乐完成签到,获得积分20
27秒前
liuynnn发布了新的文献求助10
28秒前
平凡完成签到,获得积分10
29秒前
wanci应助开朗问晴采纳,获得10
29秒前
33秒前
39秒前
所所应助xuz采纳,获得10
40秒前
华仔应助Bokuto采纳,获得10
42秒前
老王发布了新的文献求助10
47秒前
充电宝应助江经纬采纳,获得10
47秒前
李爱国应助强健的长颈鹿采纳,获得10
51秒前
戳戳完成签到 ,获得积分10
53秒前
搜集达人应助德尔塔捱斯采纳,获得10
55秒前
完美世界应助xuz采纳,获得10
58秒前
59秒前
科目三应助xalone采纳,获得10
1分钟前
1分钟前
1分钟前
111关闭了111文献求助
1分钟前
1分钟前
lokiyyy完成签到,获得积分10
1分钟前
时光机带哥走完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ding应助清浅采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881