Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images

主动脉瓣 一致性(知识库) 有限元法 过程(计算) 概率逻辑 人口 人工智能 多边形网格 计算机科学 计算模型 手术计划 算法 计算机视觉 几何学 数学 工程类 放射科 结构工程 医学 外科 操作系统 环境卫生
作者
Liang Liang,Fanwei Kong,Caitlin Martin,Thuy M. Pham,Qian Wang,James S. Duncan,Wei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
卷期号:33 (5) 被引量:51
标识
DOI:10.1002/cnm.2827
摘要

To conduct a patient-specific computational modeling of the aortic valve, 3-D aortic valve anatomic geometries of an individual patient need to be reconstructed from clinical 3-D cardiac images. Currently, most of computational studies involve manual heart valve geometry reconstruction and manual finite element (FE) model generation, which is both time-consuming and prone to human errors. A seamless computational modeling framework, which can automate this process based on machine learning algorithms, is desirable, as it can not only eliminate human errors and ensure the consistency of the modeling results but also allow fast feedback to clinicians and permits a future population-based probabilistic analysis of large patient cohorts. In this study, we developed a novel computational modeling method to automatically reconstruct the 3-D geometries of the aortic valve from computed tomographic images. The reconstructed valve geometries have built-in mesh correspondence, which bridges harmonically for the consequent FE modeling. The proposed method was evaluated by comparing the reconstructed geometries from 10 patients with those manually created by human experts, and a mean discrepancy of 0.69 mm was obtained. Based on these reconstructed geometries, FE models of valve leaflets were developed, and aortic valve closure from end systole to middiastole was simulated for 7 patients and validated by comparing the deformed geometries with those manually created by human experts, and a mean discrepancy of 1.57 mm was obtained. The proposed method offers great potential to streamline the computational modeling process and enables the development of a preoperative planning system for aortic valve disease diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Imp发布了新的文献求助10
1秒前
超帅的天曼完成签到,获得积分10
1秒前
科研通AI6应助RICK采纳,获得10
1秒前
2秒前
Criminology34应助开放的白玉采纳,获得10
2秒前
halona完成签到,获得积分10
2秒前
1+1举报K_Debug求助涉嫌违规
2秒前
3秒前
Ming完成签到,获得积分10
3秒前
邓邓发布了新的文献求助10
4秒前
小翟不宅发布了新的文献求助10
4秒前
柏文鸽关注了科研通微信公众号
5秒前
嘻嘻哈哈应助益生菌小哥采纳,获得10
5秒前
wzj发布了新的文献求助10
5秒前
5秒前
6秒前
酷波er应助fengyeou采纳,获得10
6秒前
6秒前
Lucas应助普外科老白采纳,获得10
6秒前
wangchaofk发布了新的文献求助10
7秒前
八宝粥发布了新的文献求助10
7秒前
陈瞿硕发布了新的文献求助10
7秒前
杨晓沛发布了新的文献求助10
7秒前
7秒前
7秒前
易子完成签到 ,获得积分10
9秒前
win发布了新的文献求助10
9秒前
KC完成签到 ,获得积分10
9秒前
星辰完成签到,获得积分10
9秒前
9秒前
古风欧完成签到,获得积分10
10秒前
10秒前
zer0完成签到,获得积分10
11秒前
方旋发布了新的文献求助10
12秒前
爱听歌的寒风完成签到,获得积分20
12秒前
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261106
求助须知:如何正确求助?哪些是违规求助? 4422247
关于积分的说明 13765679
捐赠科研通 4296652
什么是DOI,文献DOI怎么找? 2357478
邀请新用户注册赠送积分活动 1353844
关于科研通互助平台的介绍 1315035