已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images

主动脉瓣 一致性(知识库) 有限元法 过程(计算) 概率逻辑 人口 人工智能 多边形网格 计算机科学 计算模型 手术计划 算法 计算机视觉 几何学 数学 工程类 放射科 结构工程 医学 外科 环境卫生 操作系统
作者
Liang Liang,Fanwei Kong,Caitlin Martin,Thuy M. Pham,Qian Wang,James S. Duncan,Wei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
卷期号:33 (5) 被引量:51
标识
DOI:10.1002/cnm.2827
摘要

To conduct a patient-specific computational modeling of the aortic valve, 3-D aortic valve anatomic geometries of an individual patient need to be reconstructed from clinical 3-D cardiac images. Currently, most of computational studies involve manual heart valve geometry reconstruction and manual finite element (FE) model generation, which is both time-consuming and prone to human errors. A seamless computational modeling framework, which can automate this process based on machine learning algorithms, is desirable, as it can not only eliminate human errors and ensure the consistency of the modeling results but also allow fast feedback to clinicians and permits a future population-based probabilistic analysis of large patient cohorts. In this study, we developed a novel computational modeling method to automatically reconstruct the 3-D geometries of the aortic valve from computed tomographic images. The reconstructed valve geometries have built-in mesh correspondence, which bridges harmonically for the consequent FE modeling. The proposed method was evaluated by comparing the reconstructed geometries from 10 patients with those manually created by human experts, and a mean discrepancy of 0.69 mm was obtained. Based on these reconstructed geometries, FE models of valve leaflets were developed, and aortic valve closure from end systole to middiastole was simulated for 7 patients and validated by comparing the deformed geometries with those manually created by human experts, and a mean discrepancy of 1.57 mm was obtained. The proposed method offers great potential to streamline the computational modeling process and enables the development of a preoperative planning system for aortic valve disease diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PubMed556发布了新的文献求助10
1秒前
1秒前
29发布了新的文献求助10
2秒前
ofa完成签到,获得积分10
4秒前
4秒前
彩色的友容完成签到 ,获得积分10
5秒前
5秒前
善学以致用应助PubMed556采纳,获得10
6秒前
6秒前
7秒前
干净巧荷关注了科研通微信公众号
7秒前
123完成签到,获得积分10
7秒前
why完成签到,获得积分10
7秒前
tleeny发布了新的文献求助10
9秒前
ofa发布了新的文献求助10
9秒前
10秒前
求助人完成签到 ,获得积分10
10秒前
明理薯片发布了新的文献求助10
10秒前
11秒前
完美世界应助xxdn采纳,获得10
11秒前
香饽饽发布了新的文献求助10
11秒前
dougao完成签到,获得积分10
11秒前
云笙完成签到 ,获得积分10
12秒前
李雨欣完成签到,获得积分10
13秒前
共享精神应助皮代谷采纳,获得10
14秒前
香蕉觅云应助tleeny采纳,获得10
15秒前
16秒前
在水一方应助勤恳的妙旋采纳,获得30
17秒前
mm完成签到 ,获得积分10
17秒前
Hum6le完成签到,获得积分10
17秒前
脑洞疼应助小明采纳,获得10
20秒前
脑洞疼应助abcd采纳,获得10
21秒前
云笙关注了科研通微信公众号
21秒前
希望天下0贩的0应助zyyyyyy采纳,获得10
21秒前
堇瓜发布了新的文献求助10
22秒前
彭于晏应助体贴茗采纳,获得10
22秒前
shawn完成签到 ,获得积分10
24秒前
CipherSage应助无情的宛儿采纳,获得10
25秒前
25秒前
舒服的水壶完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879