Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images

主动脉瓣 一致性(知识库) 有限元法 过程(计算) 概率逻辑 人口 人工智能 多边形网格 计算机科学 计算模型 手术计划 算法 计算机视觉 几何学 数学 工程类 放射科 结构工程 医学 外科 环境卫生 操作系统
作者
Liang Liang,Fanwei Kong,Caitlin Martin,Thuy M. Pham,Qian Wang,James S. Duncan,Wei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
卷期号:33 (5) 被引量:51
标识
DOI:10.1002/cnm.2827
摘要

To conduct a patient-specific computational modeling of the aortic valve, 3-D aortic valve anatomic geometries of an individual patient need to be reconstructed from clinical 3-D cardiac images. Currently, most of computational studies involve manual heart valve geometry reconstruction and manual finite element (FE) model generation, which is both time-consuming and prone to human errors. A seamless computational modeling framework, which can automate this process based on machine learning algorithms, is desirable, as it can not only eliminate human errors and ensure the consistency of the modeling results but also allow fast feedback to clinicians and permits a future population-based probabilistic analysis of large patient cohorts. In this study, we developed a novel computational modeling method to automatically reconstruct the 3-D geometries of the aortic valve from computed tomographic images. The reconstructed valve geometries have built-in mesh correspondence, which bridges harmonically for the consequent FE modeling. The proposed method was evaluated by comparing the reconstructed geometries from 10 patients with those manually created by human experts, and a mean discrepancy of 0.69 mm was obtained. Based on these reconstructed geometries, FE models of valve leaflets were developed, and aortic valve closure from end systole to middiastole was simulated for 7 patients and validated by comparing the deformed geometries with those manually created by human experts, and a mean discrepancy of 1.57 mm was obtained. The proposed method offers great potential to streamline the computational modeling process and enables the development of a preoperative planning system for aortic valve disease diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴淑明完成签到,获得积分10
刚刚
clara完成签到,获得积分10
刚刚
喵喵发布了新的文献求助10
刚刚
刚刚
kosmos完成签到,获得积分10
刚刚
里苏特完成签到,获得积分10
刚刚
刚刚
qll完成签到,获得积分10
1秒前
读书娃儿完成签到,获得积分10
1秒前
1秒前
xue发布了新的文献求助10
1秒前
1秒前
艾席文完成签到,获得积分10
2秒前
陈开月完成签到,获得积分10
2秒前
胡图图完成签到,获得积分10
2秒前
田様应助Adzuki0812采纳,获得10
2秒前
曲线发布了新的文献求助10
2秒前
2秒前
lore完成签到,获得积分10
2秒前
江江完成签到,获得积分10
2秒前
结实的惊蛰完成签到,获得积分20
2秒前
啊阿阿阿沐完成签到,获得积分10
3秒前
3秒前
clara发布了新的文献求助10
3秒前
3秒前
奋斗叫兽完成签到 ,获得积分10
3秒前
芒果完成签到,获得积分10
4秒前
4秒前
sola发布了新的文献求助10
4秒前
5秒前
5秒前
ZZY发布了新的文献求助10
5秒前
keyan完成签到,获得积分10
5秒前
5秒前
跳跃凝竹发布了新的文献求助10
5秒前
艾席文发布了新的文献求助10
5秒前
苏silence发布了新的文献求助10
5秒前
Wangu完成签到,获得积分10
6秒前
xiaohaitang完成签到,获得积分10
6秒前
体贴的无色完成签到,获得积分20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017