Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images

主动脉瓣 一致性(知识库) 有限元法 过程(计算) 概率逻辑 人口 人工智能 多边形网格 计算机科学 计算模型 手术计划 算法 计算机视觉 几何学 数学 工程类 放射科 结构工程 医学 外科 环境卫生 操作系统
作者
Liang Liang,Fanwei Kong,Caitlin Martin,Thuy M. Pham,Qian Wang,James S. Duncan,Wei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
卷期号:33 (5) 被引量:51
标识
DOI:10.1002/cnm.2827
摘要

To conduct a patient-specific computational modeling of the aortic valve, 3-D aortic valve anatomic geometries of an individual patient need to be reconstructed from clinical 3-D cardiac images. Currently, most of computational studies involve manual heart valve geometry reconstruction and manual finite element (FE) model generation, which is both time-consuming and prone to human errors. A seamless computational modeling framework, which can automate this process based on machine learning algorithms, is desirable, as it can not only eliminate human errors and ensure the consistency of the modeling results but also allow fast feedback to clinicians and permits a future population-based probabilistic analysis of large patient cohorts. In this study, we developed a novel computational modeling method to automatically reconstruct the 3-D geometries of the aortic valve from computed tomographic images. The reconstructed valve geometries have built-in mesh correspondence, which bridges harmonically for the consequent FE modeling. The proposed method was evaluated by comparing the reconstructed geometries from 10 patients with those manually created by human experts, and a mean discrepancy of 0.69 mm was obtained. Based on these reconstructed geometries, FE models of valve leaflets were developed, and aortic valve closure from end systole to middiastole was simulated for 7 patients and validated by comparing the deformed geometries with those manually created by human experts, and a mean discrepancy of 1.57 mm was obtained. The proposed method offers great potential to streamline the computational modeling process and enables the development of a preoperative planning system for aortic valve disease diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小胖子发布了新的文献求助10
1秒前
LDL完成签到 ,获得积分10
1秒前
2秒前
zac2023完成签到,获得积分10
3秒前
奥特曼发布了新的文献求助10
3秒前
Akim应助QinQin采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI2S应助淡淡书白采纳,获得10
4秒前
5秒前
ayeben发布了新的文献求助10
5秒前
su完成签到,获得积分10
6秒前
6秒前
无极微光应助CICI采纳,获得20
8秒前
青云发布了新的文献求助10
8秒前
9秒前
柒玥发布了新的文献求助10
10秒前
10秒前
杨秋月完成签到,获得积分10
11秒前
13秒前
欣欣发布了新的文献求助10
13秒前
13秒前
13秒前
愉快的听枫完成签到,获得积分10
14秒前
QinQin发布了新的文献求助10
14秒前
16秒前
泽松应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
Ky_Mac应助科研通管家采纳,获得30
16秒前
泽松应助科研通管家采纳,获得10
16秒前
蛇從革应助科研通管家采纳,获得30
16秒前
wanci应助科研通管家采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
泽松应助科研通管家采纳,获得10
16秒前
Ky_Mac应助科研通管家采纳,获得30
16秒前
orixero应助科研通管家采纳,获得10
16秒前
蛇從革应助科研通管家采纳,获得30
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742835
求助须知:如何正确求助?哪些是违规求助? 5410665
关于积分的说明 15345946
捐赠科研通 4883896
什么是DOI,文献DOI怎么找? 2625419
邀请新用户注册赠送积分活动 1574229
关于科研通互助平台的介绍 1531192