Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images

主动脉瓣 一致性(知识库) 有限元法 过程(计算) 概率逻辑 人口 人工智能 多边形网格 计算机科学 计算模型 手术计划 算法 计算机视觉 几何学 数学 工程类 放射科 结构工程 医学 外科 环境卫生 操作系统
作者
Liang Liang,Fanwei Kong,Caitlin Martin,Thuy M. Pham,Qian Wang,James S. Duncan,Wei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
卷期号:33 (5) 被引量:51
标识
DOI:10.1002/cnm.2827
摘要

To conduct a patient-specific computational modeling of the aortic valve, 3-D aortic valve anatomic geometries of an individual patient need to be reconstructed from clinical 3-D cardiac images. Currently, most of computational studies involve manual heart valve geometry reconstruction and manual finite element (FE) model generation, which is both time-consuming and prone to human errors. A seamless computational modeling framework, which can automate this process based on machine learning algorithms, is desirable, as it can not only eliminate human errors and ensure the consistency of the modeling results but also allow fast feedback to clinicians and permits a future population-based probabilistic analysis of large patient cohorts. In this study, we developed a novel computational modeling method to automatically reconstruct the 3-D geometries of the aortic valve from computed tomographic images. The reconstructed valve geometries have built-in mesh correspondence, which bridges harmonically for the consequent FE modeling. The proposed method was evaluated by comparing the reconstructed geometries from 10 patients with those manually created by human experts, and a mean discrepancy of 0.69 mm was obtained. Based on these reconstructed geometries, FE models of valve leaflets were developed, and aortic valve closure from end systole to middiastole was simulated for 7 patients and validated by comparing the deformed geometries with those manually created by human experts, and a mean discrepancy of 1.57 mm was obtained. The proposed method offers great potential to streamline the computational modeling process and enables the development of a preoperative planning system for aortic valve disease diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
马格发布了新的文献求助10
2秒前
3秒前
热心夏天发布了新的文献求助10
3秒前
yumi完成签到,获得积分10
4秒前
包容代芹发布了新的文献求助10
4秒前
食杂砸发布了新的文献求助10
5秒前
CipherSage应助zzz采纳,获得10
6秒前
Yasmine完成签到 ,获得积分10
7秒前
MiaoRui完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
丘比特应助if采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
Vivid完成签到,获得积分10
10秒前
时丶倾发布了新的文献求助10
12秒前
12秒前
semigreen完成签到 ,获得积分10
13秒前
木木发布了新的文献求助10
14秒前
夜雨完成签到,获得积分10
14秒前
木木木熙完成签到,获得积分10
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
Lucia完成签到 ,获得积分10
15秒前
16秒前
17秒前
孙颖发布了新的文献求助10
17秒前
seedcode完成签到,获得积分10
17秒前
早睡早起身体好Q完成签到 ,获得积分10
17秒前
田様应助木木采纳,获得10
19秒前
19秒前
20秒前
21秒前
罗攀发布了新的文献求助10
21秒前
21秒前
21秒前
luo完成签到,获得积分10
23秒前
羽安发布了新的文献求助10
23秒前
科研通AI2S应助lyy采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858