材料科学
阴极
高分辨率透射电子显微镜
涂层
氧化物
X射线光电子能谱
纳米颗粒
煅烧
极化(电化学)
电化学
阳极
纳米技术
化学工程
复合材料
电极
冶金
物理化学
透射电子显微镜
催化作用
化学
工程类
生物化学
作者
Ji‐Guang Li,Jianling Li,Tianheng Yu,Feixiang Ding,Guofeng Xu,Zhanyu Li,Yuguang Zhao,Feiyu Kang
标识
DOI:10.1016/j.ceramint.2016.08.206
摘要
The development of Li-rich layer cathode materials has been limited by poor cycle, rate performance, phase transformation and voltage decay. To improve these properties, a facile and low-cost wet method is employed to fabricate Pr6O11 coating layer on Li[Li0.2Mn0.54Co0.13Ni0.13]O2 nanoparticles. The 3–6 nm Pr6O11 coating layer is observed on the surface of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by HRTEM. Interestingly, HAADF-STEM and EDS analyses show that the transition metal ions and the praseodymium ions mutually infiltrate in the Pr6O11 coating layer and Li[Li0.2Mn0.54Co0.13Ni0.13]O2 nanoparticles during calcination. A combination of HAADF-STEM with EDS and XPS studies reveals that Pr6O11 coating layer is bridged to Li[Li0.2Mn0.54Co0.13Ni0.13]O2 nanoparticles by the chemical bonds of transition phase Li1.2MXPr1−xO2. XRD patterns show that all samples are indexed to the layered structure α-NaFeO2, but the lattice parameters are influenced lightly after Pr6O11 coating. HRTEM and SAED analyses elucidate that the super large Pr ions surface-doping and the Pr6O11 coating are verified to suppress the transformation of layer to spinel structure in the bulk nanoparticles after cycles. The sample coated with 3 wt% Pr6O11 exhibits wonderful electrochemical performance with the first coulomb efficiency of 85.6%, the capacity retention ratio of 97.9% after 50 cycles and the discharge capacity of 162.2 mAh g−1 at 5 C. The resistant of charge transfer and the electrodes polarization are reduced by Pr6O11 coating according to EIS. Therefore, Pr6O11, which contains the super large Pr ions, plays two roles: the first one, it is coated on the Li[Li0.2Mn0.54Co0.13Ni0.13]O2 nanoparticles to optimize the environment of the interface reaction between electrodes and electrolyte; the other one, its Pr ions surface-doping stabilizes the structure in the superficial region of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 nanoparticles and suppresses the voltage decay. The multifunctional Pr6O11 can play a significant role in accelerating development of new materials with excellent stabilization and high capacity.
科研通智能强力驱动
Strongly Powered by AbleSci AI