A Survey of Big Data Analytics for Smart Forestry

分析 数据科学 数据分析 预测分析 智慧城市
作者
Weitao Zou,Weipeng Jing,Guangsheng Chen,Yang Lu,Houbing Song
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 46621-46636 被引量:24
标识
DOI:10.1109/access.2019.2907999
摘要

Accurate and reliable forestry data can be obtained by means of continuous monitoring of forests using advanced technologies, which provides a major opportunity for the development of smart forestry. However, with the improvement of the precision and acquisition speed of data, the traditional data analysis, and storage technology cannot meet the performance requirements of current applications. Forestry big data has brought a new solution to the difficulties encountered in the course of forestry development, which refers to the application of big data technology to forestry data processing. In this paper, we summarize the research and work of the big data in smart forestry in recent years. First, we review the history of the emergence and development of forestry big data, and then briefly summarize the opportunities brought to the forestry by big data technology. One of the most important tasks of forestry big data is to organize the massive data reasonably and effectively and to calculate fast. Therefore, we propose a five-layer architecture model of forestry big data and summarize the related work of data storage, query, analysis, and application. Finally, the challenges of forestry big data are analyzed, and the trend of future development has prospected from three aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木子弓长发布了新的文献求助10
2秒前
WWXWWX发布了新的文献求助10
3秒前
ye完成签到,获得积分10
3秒前
饿m完成签到 ,获得积分10
4秒前
蔡蔡不菜菜完成签到,获得积分10
4秒前
yuuuuuuu完成签到,获得积分10
4秒前
百十余完成签到,获得积分10
5秒前
tzk发布了新的文献求助10
6秒前
认真子默完成签到,获得积分10
6秒前
Lucas应助有魅力友梅采纳,获得10
7秒前
科研通AI2S应助百事采纳,获得10
8秒前
单纯草丛完成签到,获得积分10
8秒前
idynamics关注了科研通微信公众号
8秒前
田様应助123采纳,获得10
8秒前
8秒前
9秒前
边缘之上发布了新的文献求助20
10秒前
英俊的铭应助WWXWWX采纳,获得10
10秒前
36456657应助nani采纳,获得10
10秒前
12秒前
zhouzhou完成签到,获得积分10
13秒前
wanci应助整齐的蜻蜓采纳,获得10
14秒前
Mrdu发布了新的文献求助10
14秒前
phantom发布了新的文献求助10
15秒前
米花完成签到 ,获得积分10
16秒前
无花果应助科研小白采纳,获得10
16秒前
18秒前
18秒前
w11完成签到,获得积分20
19秒前
Lumi完成签到,获得积分10
20秒前
20秒前
21秒前
Hello应助李刚采纳,获得10
21秒前
尊敬的半梅完成签到,获得积分10
22秒前
甜蜜鹭洋完成签到 ,获得积分10
22秒前
糊涂的雁易应助鹿子很野采纳,获得10
23秒前
weiyf15完成签到 ,获得积分10
23秒前
萌神_HUGO发布了新的文献求助10
23秒前
JIAca发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567