Study on the Method of Cultivated Land Quality Evaluation Based on Machine Learning

计算机科学 质量(理念) 耕地 机器学习 人工智能 农业工程 土地利用 工程类 土木工程 认识论 哲学
作者
Xiaoyu Xie,Shumin Zheng,Yueming Hu,Yubin Guo
标识
DOI:10.1109/eorsa.2018.8598544
摘要

With rapid economic development, acceleration of urbanization and population growth, it causes many resource issues including soil pollution, soil erosion and unreasonable cultivated land use. More seriously, both cultivated land quantity and quality are decreasing greatly faster. Besides, with respect to physical reduction in the amount of cultivated land, the hidden decline in cultivated land quality is far more harmful to food security, ecosystem protection, and economic sustainable development. In fact, the quality of cultivated land is determined by the characteristics of different kinds of factors and the influence on each other. Therefore, an objective and accurate method of cultivated land quality evaluation is necessary and beneficial.In this paper, we analyze the association relationships of thirteen evaluation factors in the national cultivated land quality evaluation system by using FP-growth algorithm. According to the correlation results, we exclude those evaluation factors with high association relationship so that we can accomplish dimension reduction and improve evaluation efficiency under the premise of ensuring the quality of evaluation. Based on training and testing of BP neural network, the grade models of cultivated land physical quality grade are established. The methods avoid the influence of artificial factors such as experts' scoring in the model to determine the weight of every factors and some other human factors, so that improve the objectivity of the grade of cultivated land quality. Finally, we choose Guangzhou as a study area, using its cultivated land quality data for dimension reduction experiments. After training the grade models with massive data, we obtain the results of cultivated land physical quality grade in Guangzhou. According to the experiments' results, the accuracy rate of the cultivated land quality evaluation in Guangzhou can get with almost no loss. It can also show that the evaluation model of cultivated land quality given in this paper can be used at the case of that some data are missing or abnormal, and meet the expected accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
zxy完成签到 ,获得积分10
4秒前
陈_Ccc完成签到 ,获得积分10
8秒前
zhao完成签到,获得积分10
8秒前
12秒前
苗条丹南完成签到 ,获得积分10
15秒前
法外狂徒唐老鸭完成签到 ,获得积分10
15秒前
南宫士晋完成签到 ,获得积分10
15秒前
buerzi完成签到,获得积分10
16秒前
秦梦瑶瑶发布了新的文献求助10
16秒前
dayday完成签到,获得积分10
16秒前
一枝完成签到 ,获得积分10
19秒前
wzk完成签到,获得积分10
20秒前
20秒前
LaixS完成签到,获得积分10
22秒前
可爱蓝天完成签到,获得积分10
22秒前
执着千筹完成签到,获得积分10
24秒前
要笑cc完成签到,获得积分10
24秒前
宣宣宣0733完成签到,获得积分10
26秒前
猪猪hero发布了新的文献求助10
26秒前
包容的以彤完成签到 ,获得积分10
26秒前
ceeray23发布了新的文献求助20
28秒前
胡质斌完成签到,获得积分10
28秒前
完美世界应助秦梦瑶瑶采纳,获得10
29秒前
量子星尘发布了新的文献求助10
31秒前
btcat完成签到,获得积分10
33秒前
General完成签到 ,获得积分10
34秒前
iorpi完成签到,获得积分10
34秒前
北有云烟完成签到 ,获得积分10
39秒前
41秒前
danli完成签到 ,获得积分10
43秒前
符宇新发布了新的文献求助10
45秒前
大大彬完成签到 ,获得积分10
48秒前
Owen应助幽默艳采纳,获得10
48秒前
龚问萍完成签到 ,获得积分10
51秒前
77完成签到 ,获得积分10
51秒前
LYQ完成签到 ,获得积分10
52秒前
李健的小迷弟应助haochi采纳,获得10
59秒前
qiancib202完成签到,获得积分10
1分钟前
2316690509完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218