Study on the Method of Cultivated Land Quality Evaluation Based on Machine Learning

计算机科学 质量(理念) 耕地 机器学习 人工智能 农业工程 土地利用 工程类 土木工程 认识论 哲学
作者
Xiaoyu Xie,Shumin Zheng,Yueming Hu,Yubin Guo
标识
DOI:10.1109/eorsa.2018.8598544
摘要

With rapid economic development, acceleration of urbanization and population growth, it causes many resource issues including soil pollution, soil erosion and unreasonable cultivated land use. More seriously, both cultivated land quantity and quality are decreasing greatly faster. Besides, with respect to physical reduction in the amount of cultivated land, the hidden decline in cultivated land quality is far more harmful to food security, ecosystem protection, and economic sustainable development. In fact, the quality of cultivated land is determined by the characteristics of different kinds of factors and the influence on each other. Therefore, an objective and accurate method of cultivated land quality evaluation is necessary and beneficial.In this paper, we analyze the association relationships of thirteen evaluation factors in the national cultivated land quality evaluation system by using FP-growth algorithm. According to the correlation results, we exclude those evaluation factors with high association relationship so that we can accomplish dimension reduction and improve evaluation efficiency under the premise of ensuring the quality of evaluation. Based on training and testing of BP neural network, the grade models of cultivated land physical quality grade are established. The methods avoid the influence of artificial factors such as experts' scoring in the model to determine the weight of every factors and some other human factors, so that improve the objectivity of the grade of cultivated land quality. Finally, we choose Guangzhou as a study area, using its cultivated land quality data for dimension reduction experiments. After training the grade models with massive data, we obtain the results of cultivated land physical quality grade in Guangzhou. According to the experiments' results, the accuracy rate of the cultivated land quality evaluation in Guangzhou can get with almost no loss. It can also show that the evaluation model of cultivated land quality given in this paper can be used at the case of that some data are missing or abnormal, and meet the expected accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让霸完成签到 ,获得积分10
刚刚
xinxin关注了科研通微信公众号
1秒前
MrSong发布了新的文献求助50
1秒前
1秒前
魏强完成签到,获得积分10
1秒前
科研通AI6应助乐观的雨采纳,获得10
1秒前
hhh涵完成签到,获得积分10
1秒前
Owen应助achulw采纳,获得10
2秒前
spw发布了新的文献求助30
2秒前
科研通AI2S应助天蓬猪大帅采纳,获得10
3秒前
CodeCraft应助自由秋采纳,获得10
3秒前
3秒前
3秒前
列奥维登完成签到,获得积分10
3秒前
魏强发布了新的文献求助10
4秒前
4秒前
顾矜应助橘子采纳,获得10
4秒前
焱阳发布了新的文献求助10
5秒前
5秒前
闫星宇发布了新的文献求助10
5秒前
英俊的铭应助贾若彤采纳,获得10
5秒前
zbj发布了新的文献求助10
5秒前
5秒前
5秒前
嘀嘀咕咕完成签到,获得积分10
6秒前
6秒前
6秒前
11发布了新的文献求助20
6秒前
6秒前
脑洞疼应助hzz采纳,获得10
7秒前
7秒前
小郭发布了新的文献求助10
8秒前
8秒前
黯然完成签到 ,获得积分10
8秒前
吴灵发布了新的文献求助10
8秒前
9秒前
自由秋完成签到,获得积分10
9秒前
MengDS发布了新的文献求助10
9秒前
ding应助企鹅采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071562
求助须知:如何正确求助?哪些是违规求助? 4292245
关于积分的说明 13373618
捐赠科研通 4112992
什么是DOI,文献DOI怎么找? 2252181
邀请新用户注册赠送积分活动 1257228
关于科研通互助平台的介绍 1189934