Study on the Method of Cultivated Land Quality Evaluation Based on Machine Learning

计算机科学 质量(理念) 耕地 机器学习 人工智能 农业工程 土地利用 工程类 土木工程 认识论 哲学
作者
Xiaoyu Xie,Shumin Zheng,Yueming Hu,Yubin Guo
标识
DOI:10.1109/eorsa.2018.8598544
摘要

With rapid economic development, acceleration of urbanization and population growth, it causes many resource issues including soil pollution, soil erosion and unreasonable cultivated land use. More seriously, both cultivated land quantity and quality are decreasing greatly faster. Besides, with respect to physical reduction in the amount of cultivated land, the hidden decline in cultivated land quality is far more harmful to food security, ecosystem protection, and economic sustainable development. In fact, the quality of cultivated land is determined by the characteristics of different kinds of factors and the influence on each other. Therefore, an objective and accurate method of cultivated land quality evaluation is necessary and beneficial.In this paper, we analyze the association relationships of thirteen evaluation factors in the national cultivated land quality evaluation system by using FP-growth algorithm. According to the correlation results, we exclude those evaluation factors with high association relationship so that we can accomplish dimension reduction and improve evaluation efficiency under the premise of ensuring the quality of evaluation. Based on training and testing of BP neural network, the grade models of cultivated land physical quality grade are established. The methods avoid the influence of artificial factors such as experts' scoring in the model to determine the weight of every factors and some other human factors, so that improve the objectivity of the grade of cultivated land quality. Finally, we choose Guangzhou as a study area, using its cultivated land quality data for dimension reduction experiments. After training the grade models with massive data, we obtain the results of cultivated land physical quality grade in Guangzhou. According to the experiments' results, the accuracy rate of the cultivated land quality evaluation in Guangzhou can get with almost no loss. It can also show that the evaluation model of cultivated land quality given in this paper can be used at the case of that some data are missing or abnormal, and meet the expected accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噜噜噜完成签到 ,获得积分10
刚刚
ckmen5完成签到 ,获得积分10
1秒前
富贵儿完成签到 ,获得积分10
1秒前
2秒前
清风完成签到,获得积分10
2秒前
3秒前
和谐的映梦完成签到,获得积分10
3秒前
Astoria完成签到,获得积分10
3秒前
活力鸡完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Jerome发布了新的文献求助10
6秒前
布曲完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
coollzl完成签到 ,获得积分10
9秒前
小王完成签到 ,获得积分10
10秒前
11秒前
一水独流完成签到,获得积分10
11秒前
百里幻翠完成签到,获得积分10
12秒前
搜集达人应助Jerome采纳,获得10
12秒前
凡事发生必有利于我完成签到,获得积分10
14秒前
今后应助chunyan_sysu采纳,获得10
14秒前
15秒前
逍遥子完成签到,获得积分10
16秒前
完美世界应助大狒狒采纳,获得10
17秒前
尤瑟夫完成签到 ,获得积分10
17秒前
大气思柔完成签到 ,获得积分10
17秒前
ccc完成签到,获得积分10
18秒前
wjw发布了新的文献求助10
18秒前
壁虎君完成签到,获得积分10
19秒前
19秒前
Chase完成签到,获得积分10
20秒前
杨玲完成签到 ,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
尚影芷完成签到,获得积分10
22秒前
Liu完成签到 ,获得积分10
23秒前
林好人完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
枕月听松完成签到,获得积分10
24秒前
chunyan_sysu完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071