Study on the Method of Cultivated Land Quality Evaluation Based on Machine Learning

计算机科学 质量(理念) 耕地 机器学习 人工智能 农业工程 土地利用 工程类 土木工程 认识论 哲学
作者
Xiaoyu Xie,Shumin Zheng,Yueming Hu,Yubin Guo
标识
DOI:10.1109/eorsa.2018.8598544
摘要

With rapid economic development, acceleration of urbanization and population growth, it causes many resource issues including soil pollution, soil erosion and unreasonable cultivated land use. More seriously, both cultivated land quantity and quality are decreasing greatly faster. Besides, with respect to physical reduction in the amount of cultivated land, the hidden decline in cultivated land quality is far more harmful to food security, ecosystem protection, and economic sustainable development. In fact, the quality of cultivated land is determined by the characteristics of different kinds of factors and the influence on each other. Therefore, an objective and accurate method of cultivated land quality evaluation is necessary and beneficial.In this paper, we analyze the association relationships of thirteen evaluation factors in the national cultivated land quality evaluation system by using FP-growth algorithm. According to the correlation results, we exclude those evaluation factors with high association relationship so that we can accomplish dimension reduction and improve evaluation efficiency under the premise of ensuring the quality of evaluation. Based on training and testing of BP neural network, the grade models of cultivated land physical quality grade are established. The methods avoid the influence of artificial factors such as experts' scoring in the model to determine the weight of every factors and some other human factors, so that improve the objectivity of the grade of cultivated land quality. Finally, we choose Guangzhou as a study area, using its cultivated land quality data for dimension reduction experiments. After training the grade models with massive data, we obtain the results of cultivated land physical quality grade in Guangzhou. According to the experiments' results, the accuracy rate of the cultivated land quality evaluation in Guangzhou can get with almost no loss. It can also show that the evaluation model of cultivated land quality given in this paper can be used at the case of that some data are missing or abnormal, and meet the expected accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
顶顶顶完成签到,获得积分10
1秒前
淡定幼珊发布了新的文献求助10
2秒前
华111完成签到,获得积分10
3秒前
在水一方应助MFNM采纳,获得10
4秒前
馋馋发布了新的文献求助10
5秒前
李不过发布了新的文献求助20
8秒前
寻绿完成签到,获得积分10
9秒前
9秒前
lilyccc完成签到,获得积分10
9秒前
酷波er应助读行千万采纳,获得10
11秒前
ss发布了新的文献求助10
13秒前
Akim应助珊熙采纳,获得10
15秒前
研友_8DVdzn发布了新的文献求助10
15秒前
程住气完成签到 ,获得积分10
16秒前
zz应助caramel采纳,获得10
18秒前
18秒前
Ruilin发布了新的文献求助10
19秒前
21秒前
虚拟的柠檬完成签到,获得积分10
22秒前
科目三应助mofei采纳,获得10
23秒前
馋馋完成签到,获得积分10
23秒前
读行千万发布了新的文献求助10
24秒前
24秒前
27秒前
林旭发布了新的文献求助10
27秒前
张英俊发布了新的文献求助10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
iNk应助科研通管家采纳,获得10
30秒前
30秒前
所所应助清秀金连采纳,获得10
31秒前
32秒前
ss完成签到,获得积分20
33秒前
Owen应助林旭采纳,获得10
34秒前
yaoyh_gc发布了新的文献求助10
34秒前
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254080
求助须知:如何正确求助?哪些是违规求助? 2896443
关于积分的说明 8292655
捐赠科研通 2565288
什么是DOI,文献DOI怎么找? 1392945
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629856