亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ResInNet: A Novel Deep Neural Network With Feature Reuse for Internet of Things

计算机科学 特征(语言学) 人工智能 人工神经网络 水准点(测量) 机器学习 深度学习 重新使用 非线性系统 计算机工程 生物 大地测量学 物理 哲学 量子力学 语言学 地理 生态学
作者
Xiaochuan Sun,Guan Gui,Yingqi Li,Ren Ping Liu,Yongli An
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (1): 679-691 被引量:85
标识
DOI:10.1109/jiot.2018.2853663
摘要

Deep neural networks (DNNs) have widely used in various Internet-of-Things (IoT) applications. Pursuing superior performance is always a hot spot in the field of DNN modeling. Recently, feature reuse provides an effective means of achieving favorable nonlinear approximation performance in deep learning. Existing implementations utilizes a multilayer perception (MLP) to act as a functional unit for feature reuse. However, determining connection weight and bias of MLP is a rather intractable problem, since the conventional back-propagation learning approach encounters the limitations of slow convergence and local optimum. To address this issue, this paper develops a novel DNN considering a well-behaved alternative called reservoir computing, i.e., reservoir in network (ResInNet). In this structure, the built-in reservoir has two notable functions. First, it behaves as a bridge between any two restricted Boltzmann machines in the feature learning part of ResInNet, performing a feature abstraction once again. Such reservoir-based feature translation provides excellent starting points for the following nonlinear regression. Second, it serves as a nonlinear approximation, trained by a simple linear regression using the most representative (learned) features. Experimental results over various benchmark datasets show that ResInNet can achieve the superior nonlinear approximation performance in comparison to the baseline models, and produce the excellent dynamic characteristics and memory capacity. Meanwhile, the merits of our approach is further demonstrated in the network traffic prediction related to real-world IoT application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
leave完成签到 ,获得积分0
2秒前
浮浮世世发布了新的文献求助150
6秒前
泠漓完成签到 ,获得积分10
9秒前
一粟完成签到 ,获得积分10
9秒前
12秒前
万能图书馆应助木叶采纳,获得10
12秒前
13秒前
科研通AI6应助花开的声音采纳,获得10
14秒前
牛八先生完成签到,获得积分10
15秒前
linsen发布了新的文献求助10
16秒前
ckx完成签到 ,获得积分10
17秒前
18秒前
CipherSage应助yzizz采纳,获得10
18秒前
小蘑菇应助shangxinyu采纳,获得10
20秒前
Moo5_zzZ发布了新的文献求助30
25秒前
yuxi2025完成签到 ,获得积分10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
BowieHuang应助科研通管家采纳,获得10
26秒前
shhoing应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
26秒前
28秒前
28秒前
紫色奶萨发布了新的文献求助10
30秒前
32秒前
任性的岱周完成签到,获得积分10
33秒前
BowieHuang应助泉此方采纳,获得10
33秒前
shangxinyu发布了新的文献求助10
33秒前
狐金华发布了新的文献求助10
34秒前
张流筝完成签到 ,获得积分10
35秒前
CipherSage应助文艺的菀采纳,获得10
39秒前
芝士奶盖有点咸完成签到 ,获得积分10
43秒前
44秒前
boyue完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543024
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610916
捐赠科研通 4570411
什么是DOI,文献DOI怎么找? 2505751
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454364