已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ResInNet: A Novel Deep Neural Network With Feature Reuse for Internet of Things

计算机科学 特征(语言学) 人工智能 人工神经网络 水准点(测量) 机器学习 深度学习 重新使用 非线性系统 计算机工程 生物 大地测量学 物理 哲学 量子力学 语言学 地理 生态学
作者
Xiaochuan Sun,Guan Gui,Yingqi Li,Ren Ping Liu,Yongli An
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (1): 679-691 被引量:85
标识
DOI:10.1109/jiot.2018.2853663
摘要

Deep neural networks (DNNs) have widely used in various Internet-of-Things (IoT) applications. Pursuing superior performance is always a hot spot in the field of DNN modeling. Recently, feature reuse provides an effective means of achieving favorable nonlinear approximation performance in deep learning. Existing implementations utilizes a multilayer perception (MLP) to act as a functional unit for feature reuse. However, determining connection weight and bias of MLP is a rather intractable problem, since the conventional back-propagation learning approach encounters the limitations of slow convergence and local optimum. To address this issue, this paper develops a novel DNN considering a well-behaved alternative called reservoir computing, i.e., reservoir in network (ResInNet). In this structure, the built-in reservoir has two notable functions. First, it behaves as a bridge between any two restricted Boltzmann machines in the feature learning part of ResInNet, performing a feature abstraction once again. Such reservoir-based feature translation provides excellent starting points for the following nonlinear regression. Second, it serves as a nonlinear approximation, trained by a simple linear regression using the most representative (learned) features. Experimental results over various benchmark datasets show that ResInNet can achieve the superior nonlinear approximation performance in comparison to the baseline models, and produce the excellent dynamic characteristics and memory capacity. Meanwhile, the merits of our approach is further demonstrated in the network traffic prediction related to real-world IoT application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚定珩发布了新的文献求助10
1秒前
2秒前
2秒前
5秒前
殴打阿达发布了新的文献求助150
5秒前
华仔应助asdqweqwe采纳,获得10
5秒前
Mia发布了新的文献求助10
5秒前
时尚以亦发布了新的文献求助30
8秒前
8秒前
8秒前
11秒前
13秒前
充电宝应助宁人采纳,获得10
13秒前
14秒前
lh23完成签到,获得积分10
14秒前
打打应助Why采纳,获得10
16秒前
繁荣的元灵应助活泼送终采纳,获得10
16秒前
小二郎应助Mia采纳,获得10
17秒前
小邸发布了新的文献求助10
17秒前
烟花应助忧郁的鱿鱼采纳,获得10
18秒前
所所应助yuanyuan采纳,获得10
18秒前
lemonyu发布了新的文献求助10
19秒前
走走发布了新的文献求助10
19秒前
19秒前
坚定珩发布了新的文献求助10
19秒前
20秒前
科研通AI6应助第五元素采纳,获得10
20秒前
田様应助自觉的溪灵采纳,获得10
22秒前
23秒前
酷波er应助邢哥哥采纳,获得10
24秒前
英姑应助kugayuma采纳,获得10
24秒前
科研通AI2S应助走走采纳,获得10
24秒前
levicho发布了新的文献求助10
25秒前
ruochenzu完成签到,获得积分10
25秒前
27秒前
28秒前
29秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599474
求助须知:如何正确求助?哪些是违规求助? 4685116
关于积分的说明 14837894
捐赠科研通 4668470
什么是DOI,文献DOI怎么找? 2537994
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784