清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ResInNet: A Novel Deep Neural Network With Feature Reuse for Internet of Things

计算机科学 特征(语言学) 人工智能 人工神经网络 水准点(测量) 机器学习 深度学习 重新使用 非线性系统 计算机工程 生物 大地测量学 物理 哲学 量子力学 语言学 地理 生态学
作者
Xiaochuan Sun,Guan Gui,Yingqi Li,Ren Ping Liu,Yongli An
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (1): 679-691 被引量:85
标识
DOI:10.1109/jiot.2018.2853663
摘要

Deep neural networks (DNNs) have widely used in various Internet-of-Things (IoT) applications. Pursuing superior performance is always a hot spot in the field of DNN modeling. Recently, feature reuse provides an effective means of achieving favorable nonlinear approximation performance in deep learning. Existing implementations utilizes a multilayer perception (MLP) to act as a functional unit for feature reuse. However, determining connection weight and bias of MLP is a rather intractable problem, since the conventional back-propagation learning approach encounters the limitations of slow convergence and local optimum. To address this issue, this paper develops a novel DNN considering a well-behaved alternative called reservoir computing, i.e., reservoir in network (ResInNet). In this structure, the built-in reservoir has two notable functions. First, it behaves as a bridge between any two restricted Boltzmann machines in the feature learning part of ResInNet, performing a feature abstraction once again. Such reservoir-based feature translation provides excellent starting points for the following nonlinear regression. Second, it serves as a nonlinear approximation, trained by a simple linear regression using the most representative (learned) features. Experimental results over various benchmark datasets show that ResInNet can achieve the superior nonlinear approximation performance in comparison to the baseline models, and produce the excellent dynamic characteristics and memory capacity. Meanwhile, the merits of our approach is further demonstrated in the network traffic prediction related to real-world IoT application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋夜临完成签到,获得积分0
刚刚
跳跃的鹏飞完成签到 ,获得积分0
6秒前
海英完成签到,获得积分10
11秒前
luobote完成签到 ,获得积分10
18秒前
吕佳完成签到 ,获得积分10
19秒前
限量版小祸害完成签到 ,获得积分10
22秒前
qiqi完成签到,获得积分10
24秒前
25秒前
我是老大应助Joy采纳,获得10
29秒前
qiqiqiqiqi完成签到 ,获得积分10
29秒前
Singularity完成签到,获得积分0
30秒前
早睡早起身体好Q完成签到 ,获得积分10
45秒前
沉静香氛完成签到 ,获得积分10
46秒前
naczx完成签到,获得积分0
49秒前
李志全完成签到 ,获得积分10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
xgx984完成签到,获得积分10
53秒前
共享精神应助keke采纳,获得10
1分钟前
Nene完成签到 ,获得积分10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
大模型应助Zhuyin采纳,获得10
1分钟前
1分钟前
MoodMeed完成签到,获得积分10
1分钟前
1分钟前
Joy发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
害羞的裘完成签到 ,获得积分10
1分钟前
此时此刻完成签到 ,获得积分10
1分钟前
SciGPT应助Joy采纳,获得10
1分钟前
1分钟前
mengqing发布了新的文献求助10
1分钟前
1分钟前
coding完成签到,获得积分10
1分钟前
Lucas应助积极香菜采纳,获得10
1分钟前
玺青一生完成签到 ,获得积分10
1分钟前
平常的三问完成签到 ,获得积分10
2分钟前
呼延坤完成签到 ,获得积分10
2分钟前
阿泽发布了新的文献求助10
2分钟前
非我完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310