Cooperative Eco-Driving at Signalized Intersections in a Partially Connected and Automated Vehicle Environment

维西姆 穿透率 能源消耗 运输工程 汽车工程 交通模拟 燃料效率 智能交通系统 模拟 工程类 计算机科学 交叉口(航空) 电气工程 岩土工程
作者
Ziran Wang,Guoyuan Wu,Matthew Barth
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 2029-2038 被引量:126
标识
DOI:10.1109/tits.2019.2911607
摘要

The emergence of connected and automated vehicle (CAV) technology has the potential to bring a number of benefits to our existing transportation systems. Specifically, when CAVs travel along an arterial corridor with signalized intersections, they can not only be driven automatically using pre-designed control models but can also communicate with other CAVs and the roadside infrastructure. In this paper, we describe a cooperative eco-driving (CED) system targeted for signalized corridors, focusing on how the penetration rate of CAVs affects the energy efficiency of the traffic network. In particular, we propose a role transition protocol for CAVs to switch between a leader and following vehicles in a string. Longitudinal control models are developed for conventional vehicles in the network and for different CAVs based on their roles and distances to intersections. A microscopic traffic simulation evaluation has been conducted using PTV VISSIM with realistic traffic data collected for the City of Riverside, CA, USA. The effects on traffic mobility are evaluated, and the environmental benefits are analyzed by the U.S. Environmental Protection Agency's MOtor Vehicle Emission Simulator (MOVES) model. The simulation results indicate that the energy consumption and pollutant emissions of the proposed system decrease, as the penetration rate of CAVs increases. Specifically, more than 7% reduction on energy consumption and up to 59% reduction on pollutant emission can be achieved when all vehicles in the proposed system are CAVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋头不秃头完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
kushdw完成签到,获得积分10
2秒前
傲娇小废柴完成签到,获得积分20
3秒前
TranYan发布了新的文献求助10
3秒前
Sally发布了新的文献求助10
3秒前
sun应助怡然的飞珍采纳,获得20
4秒前
4秒前
5秒前
5秒前
孔雨珍完成签到,获得积分10
6秒前
娇气的春天完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
大模型应助奔奔采纳,获得10
8秒前
9秒前
9秒前
Owen应助西哈哈采纳,获得10
9秒前
Jessie完成签到 ,获得积分10
9秒前
烟花应助孔雨珍采纳,获得10
10秒前
王小志发布了新的文献求助10
10秒前
科研通AI5应助SCI采纳,获得10
10秒前
net完成签到 ,获得积分10
10秒前
Sally完成签到,获得积分10
11秒前
飘逸蘑菇完成签到 ,获得积分10
11秒前
12秒前
小二郎应助tao采纳,获得10
12秒前
陈丫发布了新的文献求助10
12秒前
12秒前
12秒前
小二郎应助凉风有信9527采纳,获得10
13秒前
LEMON发布了新的文献求助20
14秒前
炜大的我完成签到,获得积分10
14秒前
haimianbaobao发布了新的文献求助10
14秒前
传奇3应助研友_nPoXoL采纳,获得10
14秒前
lpp完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794