A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials

均质化(气候) 多尺度建模 计算机科学 非线性系统 材料性能 代表性基本卷 超弹性材料 微观力学 人工神经网络 有限元法 拓扑(电路) 人工智能 算法 材料科学 数学 结构工程 复合材料 化学 工程类 计算化学 生物多样性 物理 组合数学 复合数 生物 量子力学 生态学
作者
Zeliang Liu,Cheng Wu,M. Koishi
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:345: 1138-1168 被引量:222
标识
DOI:10.1016/j.cma.2018.09.020
摘要

In this paper, a new data-driven multiscale material modeling method, which we refer to as deep material network, is developed based on mechanistic homogenization theory of representative volume element (RVE) and advanced machine learning techniques. We propose to use a collection of connected mechanistic building blocks with analytical homogenization solutions to describe complex overall material responses which avoids the loss of essential physics in generic neural network. This concept is demonstrated for 2-dimensional RVE problems and network depth up to 7. Based on linear elastic RVE data from offline direct numerical simulations, the material network can be effectively trained using stochastic gradient descent with backpropagation algorithm, further enhanced by model compression methods. Importantly, the trained network is valid for any local material laws without the need for additional calibration or micromechanics assumption. Its extrapolations to unknown material and loading spaces for a wide range of problems are validated through numerical experiments, including linear elasticity with high contrast of phase properties, nonlinear history-dependent plasticity and finite-strain hyperelasticity under large deformations. By discovering a proper topological representation of RVE with fewer degrees of freedom, this intelligent material model is believed to open new possibilities of high-fidelity efficient concurrent simulations for a large-scale heterogeneous structure. It also provides a mechanistic understanding of structure–property relations across material length scales and enables the development of parameterized microstructural database for material design and manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的绿竹完成签到,获得积分10
2秒前
muxinzx发布了新的文献求助10
2秒前
3秒前
大气愚志关注了科研通微信公众号
3秒前
4秒前
lululu发布了新的文献求助10
5秒前
李健的小迷弟应助雅琳子采纳,获得10
6秒前
Samuel完成签到,获得积分10
6秒前
李健的粉丝团团长应助WS采纳,获得10
6秒前
8秒前
俏皮鸵鸟完成签到,获得积分10
9秒前
方乔杉发布了新的文献求助10
10秒前
10秒前
10秒前
甜桃咖喱椰完成签到 ,获得积分20
11秒前
牛牛向前冲完成签到,获得积分10
12秒前
俏皮鸵鸟发布了新的文献求助10
13秒前
TTTTTT发布了新的文献求助10
13秒前
Leo发布了新的文献求助10
13秒前
14秒前
顾矜应助gishisei采纳,获得10
15秒前
李学文啊完成签到,获得积分10
15秒前
小Q含完成签到,获得积分10
15秒前
16秒前
16秒前
OrangeWang发布了新的文献求助10
17秒前
18秒前
不会取名字完成签到,获得积分10
20秒前
20秒前
20秒前
慕青应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得20
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
lwl应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
so000应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459176
求助须知:如何正确求助?哪些是违规求助? 3053746
关于积分的说明 9038127
捐赠科研通 2743025
什么是DOI,文献DOI怎么找? 1504631
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663