Evolution-Guided Policy Gradient in Reinforcement Learning

强化学习 杠杆(统计) 计算机科学 人工智能 人口 超参数 航程(航空) 机器学习 数学优化 进化算法 数学 工程类 人口学 社会学 航空航天工程
作者
Shauharda Khadka,Kagan Tumer
出处
期刊:Cornell University - arXiv 被引量:96
标识
DOI:10.48550/arxiv.1805.07917
摘要

Deep Reinforcement Learning (DRL) algorithms have been successfully applied to a range of challenging control tasks. However, these methods typically suffer from three core difficulties: temporal credit assignment with sparse rewards, lack of effective exploration, and brittle convergence properties that are extremely sensitive to hyperparameters. Collectively, these challenges severely limit the applicability of these approaches to real-world problems. Evolutionary Algorithms (EAs), a class of black box optimization techniques inspired by natural evolution, are well suited to address each of these three challenges. However, EAs typically suffer from high sample complexity and struggle to solve problems that require optimization of a large number of parameters. In this paper, we introduce Evolutionary Reinforcement Learning (ERL), a hybrid algorithm that leverages the population of an EA to provide diversified data to train an RL agent, and reinserts the RL agent into the EA population periodically to inject gradient information into the EA. ERL inherits EA's ability of temporal credit assignment with a fitness metric, effective exploration with a diverse set of policies, and stability of a population-based approach and complements it with off-policy DRL's ability to leverage gradients for higher sample efficiency and faster learning. Experiments in a range of challenging continuous control benchmarks demonstrate that ERL significantly outperforms prior DRL and EA methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
掌上三寸发布了新的文献求助10
2秒前
3秒前
4秒前
勤奋的刺猬完成签到,获得积分10
4秒前
xiaoqianqian174完成签到,获得积分10
5秒前
包凡之发布了新的文献求助10
5秒前
6秒前
d董完成签到,获得积分10
7秒前
8秒前
Orange应助luoluo采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
JamesYang发布了新的文献求助10
10秒前
欧哈纳发布了新的文献求助10
10秒前
orixero应助diplomat采纳,获得10
11秒前
11秒前
希望天下0贩的0应助南北采纳,获得10
12秒前
14秒前
Ellalala发布了新的文献求助10
14秒前
汉堡包应助sunhealth采纳,获得10
15秒前
JamesPei应助JamesYang采纳,获得10
16秒前
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
orixero应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
烟花应助科研通管家采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317