Evolution-Guided Policy Gradient in Reinforcement Learning

强化学习 杠杆(统计) 计算机科学 人工智能 人口 超参数 航程(航空) 机器学习 数学优化 进化算法 数学 工程类 人口学 社会学 航空航天工程
作者
Shauharda Khadka,Kagan Tumer
出处
期刊:Cornell University - arXiv 被引量:96
标识
DOI:10.48550/arxiv.1805.07917
摘要

Deep Reinforcement Learning (DRL) algorithms have been successfully applied to a range of challenging control tasks. However, these methods typically suffer from three core difficulties: temporal credit assignment with sparse rewards, lack of effective exploration, and brittle convergence properties that are extremely sensitive to hyperparameters. Collectively, these challenges severely limit the applicability of these approaches to real-world problems. Evolutionary Algorithms (EAs), a class of black box optimization techniques inspired by natural evolution, are well suited to address each of these three challenges. However, EAs typically suffer from high sample complexity and struggle to solve problems that require optimization of a large number of parameters. In this paper, we introduce Evolutionary Reinforcement Learning (ERL), a hybrid algorithm that leverages the population of an EA to provide diversified data to train an RL agent, and reinserts the RL agent into the EA population periodically to inject gradient information into the EA. ERL inherits EA's ability of temporal credit assignment with a fitness metric, effective exploration with a diverse set of policies, and stability of a population-based approach and complements it with off-policy DRL's ability to leverage gradients for higher sample efficiency and faster learning. Experiments in a range of challenging continuous control benchmarks demonstrate that ERL significantly outperforms prior DRL and EA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助迷路的问玉采纳,获得10
刚刚
刚刚
1秒前
英俊的铭应助zhuling采纳,获得10
1秒前
开心超人发布了新的文献求助10
1秒前
lilac完成签到,获得积分10
1秒前
mariawang发布了新的文献求助10
2秒前
共享精神应助zhuzhu采纳,获得10
2秒前
SciGPT应助hh采纳,获得10
2秒前
柒柒_BX发布了新的文献求助10
2秒前
3秒前
zzy发布了新的文献求助10
4秒前
xkxkii完成签到,获得积分20
4秒前
zhaopeipei发布了新的文献求助10
4秒前
6秒前
华仔应助好运连连采纳,获得10
6秒前
小蘑菇应助冰柠檬采纳,获得10
6秒前
6秒前
songyueyue完成签到,获得积分10
7秒前
7秒前
llynvxia发布了新的文献求助10
8秒前
PANDA发布了新的文献求助10
9秒前
9秒前
绝情继父发布了新的文献求助10
10秒前
whitezhu完成签到 ,获得积分10
10秒前
10秒前
Kannan发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
Duffy发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
科研通AI2S应助刘傲薇采纳,获得30
17秒前
ZHAOYUN完成签到 ,获得积分10
18秒前
冰柠檬发布了新的文献求助10
19秒前
天天快乐应助陈sir采纳,获得10
20秒前
Erich发布了新的文献求助10
21秒前
牡丹皮炭发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049