Estimation of Soil Respiration by Its Driving Factors Based on Multi-Source Data in a Sub-Alpine Meadow in North China

环境科学 问题10 归一化差异植被指数 高度(三角形) 中分辨率成像光谱仪 土壤呼吸 大气科学 植被(病理学) 含水量 土壤水分 土壤科学 自然地理学 遥感 气候学 呼吸 气候变化 卫星 生态学 数学 地理 地质学 医学 植物 几何学 岩土工程 病理 工程类 生物 航空航天工程
作者
Yanan Liang,Yanpeng Cai,Junxia Yan,Hongjian Li
出处
期刊:Sustainability [MDPI AG]
卷期号:11 (12): 3274-3274 被引量:8
标识
DOI:10.3390/su11123274
摘要

Soil respiration (Rs) in high-altitude areas are normally sensitive to varying climatic conditions. The objective of this research was mainly to explore temporal variations in Rs rates and the corresponding controlling factors for the establishment of appropriate fitting models in a sub-alpine meadow of north China. The data was obtained through field measuring and extraction of the Moderate Resolution Imaging Spectroradiometer (MODIS) in the geographical unit of the study site over the period of 2007 to 2015. The main results were as follows: (1) seasonal variations in Rs rates, soil temperature (Ts), land surface temperature (LST), and normalized difference vegetation index (NDVI) all produced symmetrical bell type patterns, while soil moisture (Ms) showed a fluctuating pattern, (2) a Ts-exponential model could greatly capture seasonal variations of Rs rates in the study site, reflecting the role of temperature as a dominant driving factor in determining Rs temporal variations in alpine meadow areas, (3) there was no significant difference between the performing indicators evaluating the proposed Ts-exponential model and the LST-exponential model. This indicated great potential for applying remote sensing products to estimate seasonal Rs rates and 4) seasonal variations in Rs rates towards temperature sensitivity (Q10) showed a concave curve and dramatically decreased as the temperature increased from −1 to 11 °C. Overall, the results indicated that attention to significant effects of climatic conditions on Rs, particularly in areas of low temperature, should be warranted. Also, applicability of remote sensing products for estimating Rs was reflected and demonstrated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
秀丽的小懒虫完成签到,获得积分10
刚刚
清明居士发布了新的文献求助10
1秒前
嘻嘻哈哈发布了新的文献求助10
1秒前
2秒前
Fortune发布了新的文献求助10
3秒前
3秒前
4秒前
sasa发布了新的文献求助10
4秒前
Lexi发布了新的文献求助10
4秒前
积极的凝云完成签到,获得积分10
4秒前
半夏发布了新的文献求助10
4秒前
月星发布了新的文献求助10
5秒前
睿力发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
伶俐的夜梦完成签到,获得积分10
5秒前
Tracy完成签到,获得积分10
6秒前
随便关注了科研通微信公众号
6秒前
TIAMO完成签到,获得积分10
7秒前
7秒前
Nes完成签到,获得积分20
7秒前
8秒前
8秒前
CherylZhao发布了新的文献求助10
9秒前
爆米花应助wen采纳,获得10
9秒前
9秒前
sasa完成签到,获得积分10
10秒前
Orange应助眼里还有光采纳,获得10
11秒前
小蘑菇应助伶俐的夜梦采纳,获得30
11秒前
weiyi完成签到,获得积分20
11秒前
ff发布了新的文献求助10
12秒前
Fortune完成签到,获得积分10
12秒前
邹秋雨发布了新的文献求助10
12秒前
123lx完成签到 ,获得积分10
12秒前
13秒前
轻松完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802