保险丝(电气)
合成孔径雷达
计算机科学
生成对抗网络
云计算
多光谱图像
人工智能
薄雾
遥感
计算机视觉
雷达成像
雷达
深度学习
电信
工程类
气象学
地质学
电气工程
物理
操作系统
作者
Claas Grohnfeldt,Michael Schmitt,Xiao Xiang Zhu
标识
DOI:10.1109/igarss.2018.8519215
摘要
In this paper, we present the first conditional generative adversarial network (cGAN) architecture that is specifically designed to fuse synthetic aperture radar (SAR) and optical multi-spectral (MS) image data to generate cloud- and haze-free MS optical data from a cloud-corrupted MS input and an auxiliary SAR image. Experiments on Sentinel-2 MS and Sentinel-l SAR data confirm that our extended SAR-Opt-cGAN model utilizes the auxiliary SAR information to better reconstruct MS images than an equivalent model which uses the same architecture but only single-sensor MS data as input.
科研通智能强力驱动
Strongly Powered by AbleSci AI