Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis

医学 类风湿性关节炎 痹症科 电子健康档案 接收机工作特性 物理疗法 疾病 内科学 健康档案 病历 人口统计学的 急诊医学 医疗保健 家庭医学 人口学 经济 社会学 经济增长
作者
Beau Norgeot,Benjamin S. Glicksberg,Laura Trupin,Dmytro Lituiev,Milena Gianfrancesco,Boris Oskotsky,Gabriela Schmajuk,Jinoos Yazdany,Atul J. Butte
出处
期刊:JAMA network open [American Medical Association]
卷期号:2 (3): e190606-e190606 被引量:176
标识
DOI:10.1001/jamanetworkopen.2019.0606
摘要

Knowing the future condition of a patient would enable a physician to customize current therapeutic options to prevent disease worsening, but predicting that future condition requires sophisticated modeling and information. If artificial intelligence models were capable of forecasting future patient outcomes, they could be used to aid practitioners and patients in prognosticating outcomes or simulating potential outcomes under different treatment scenarios.To assess the ability of an artificial intelligence system to prognosticate the state of disease activity of patients with rheumatoid arthritis (RA) at their next clinical visit.This prognostic study included 820 patients with RA from rheumatology clinics at 2 distinct health care systems with different electronic health record platforms: a university hospital (UH) and a public safety-net hospital (SNH). The UH and SNH had substantially different patient populations and treatment patterns. The UH has records on approximately 1 million total patients starting in January 2012. The UH data for this study were accessed on July 1, 2017. The SNH has records on 65 000 unique individuals starting in January 2013. The SNH data for the study were collected on February 27, 2018.Structured data were extracted from the electronic health record, including exposures (medications), patient demographics, laboratories, and prior measures of disease activity. A longitudinal deep learning model was used to predict disease activity for patients with RA at their next rheumatology clinic visit and to evaluate interhospital performance and model interoperability strategies.Model performance was quantified using the area under the receiver operating characteristic curve (AUROC). Disease activity in RA was measured using a composite index score.A total of 578 UH patients (mean [SD] age, 57 [15] years; 477 [82.5%] female; 296 [51.2%] white) and 242 SNH patients (mean [SD] age, 60 [15] years; 195 [80.6%] female; 30 [12.4%] white) were included in the study. Patients at the UH compared with those at the SNH were seen more frequently (median time between visits, 100 vs 180 days) and were more frequently prescribed higher-class medications (biologics) (364 [63.0%] vs 70 [28.9%]). At the UH, the model reached an AUROC of 0.91 (95% CI, 0.86-0.96) in a test cohort of 116 patients. The UH-trained model had an AUROC of 0.74 (95% CI, 0.65-0.83) in the SNH test cohort (n = 117) despite marked differences in the patient populations. In both settings, baseline prediction using each patients' most recent disease activity score had statistically random performance.The findings suggest that building accurate models to forecast complex disease outcomes using electronic health record data is possible and these models can be shared across hospitals with diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zho发布了新的文献求助30
1秒前
1秒前
ywang发布了新的文献求助10
1秒前
ZD小草完成签到 ,获得积分10
2秒前
健忘曼冬完成签到,获得积分10
3秒前
hkl1542发布了新的文献求助50
4秒前
5秒前
6秒前
KYN完成签到,获得积分10
7秒前
7秒前
桐桐应助叶未晞yi采纳,获得10
7秒前
7秒前
su发布了新的文献求助10
8秒前
123456789完成签到,获得积分10
10秒前
炙热的如柏完成签到,获得积分20
10秒前
11秒前
12秒前
HWei完成签到,获得积分10
12秒前
Ryan完成签到,获得积分10
12秒前
13秒前
Jzhang应助丙队长采纳,获得10
15秒前
16秒前
GXY发布了新的文献求助30
17秒前
Lucas应助专注秋尽采纳,获得10
17秒前
17秒前
754完成签到,获得积分10
17秒前
20秒前
学习猴发布了新的文献求助10
20秒前
充电宝应助炙热的如柏采纳,获得10
21秒前
所所应助qzaima采纳,获得10
21秒前
米兰达完成签到 ,获得积分0
22秒前
xg发布了新的文献求助10
24秒前
Loooong应助Ni采纳,获得10
25秒前
25秒前
WZ0904发布了新的文献求助10
25秒前
顾矜应助博ge采纳,获得10
27秒前
27秒前
Lotus发布了新的文献求助10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824