Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis

医学 类风湿性关节炎 痹症科 电子健康档案 接收机工作特性 物理疗法 疾病 内科学 健康档案 病历 人口统计学的 急诊医学 医疗保健 家庭医学 人口学 经济 社会学 经济增长
作者
Beau Norgeot,Benjamin S. Glicksberg,Laura Trupin,Dmytro Lituiev,Milena Gianfrancesco,Boris Oskotsky,Gabriela Schmajuk,Jinoos Yazdany,Atul J. Butte
出处
期刊:JAMA network open [American Medical Association]
卷期号:2 (3): e190606-e190606 被引量:176
标识
DOI:10.1001/jamanetworkopen.2019.0606
摘要

Knowing the future condition of a patient would enable a physician to customize current therapeutic options to prevent disease worsening, but predicting that future condition requires sophisticated modeling and information. If artificial intelligence models were capable of forecasting future patient outcomes, they could be used to aid practitioners and patients in prognosticating outcomes or simulating potential outcomes under different treatment scenarios.To assess the ability of an artificial intelligence system to prognosticate the state of disease activity of patients with rheumatoid arthritis (RA) at their next clinical visit.This prognostic study included 820 patients with RA from rheumatology clinics at 2 distinct health care systems with different electronic health record platforms: a university hospital (UH) and a public safety-net hospital (SNH). The UH and SNH had substantially different patient populations and treatment patterns. The UH has records on approximately 1 million total patients starting in January 2012. The UH data for this study were accessed on July 1, 2017. The SNH has records on 65 000 unique individuals starting in January 2013. The SNH data for the study were collected on February 27, 2018.Structured data were extracted from the electronic health record, including exposures (medications), patient demographics, laboratories, and prior measures of disease activity. A longitudinal deep learning model was used to predict disease activity for patients with RA at their next rheumatology clinic visit and to evaluate interhospital performance and model interoperability strategies.Model performance was quantified using the area under the receiver operating characteristic curve (AUROC). Disease activity in RA was measured using a composite index score.A total of 578 UH patients (mean [SD] age, 57 [15] years; 477 [82.5%] female; 296 [51.2%] white) and 242 SNH patients (mean [SD] age, 60 [15] years; 195 [80.6%] female; 30 [12.4%] white) were included in the study. Patients at the UH compared with those at the SNH were seen more frequently (median time between visits, 100 vs 180 days) and were more frequently prescribed higher-class medications (biologics) (364 [63.0%] vs 70 [28.9%]). At the UH, the model reached an AUROC of 0.91 (95% CI, 0.86-0.96) in a test cohort of 116 patients. The UH-trained model had an AUROC of 0.74 (95% CI, 0.65-0.83) in the SNH test cohort (n = 117) despite marked differences in the patient populations. In both settings, baseline prediction using each patients' most recent disease activity score had statistically random performance.The findings suggest that building accurate models to forecast complex disease outcomes using electronic health record data is possible and these models can be shared across hospitals with diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的青亦完成签到 ,获得积分10
刚刚
jf完成签到 ,获得积分10
1秒前
LIUJIE完成签到,获得积分10
2秒前
lrid完成签到 ,获得积分10
3秒前
3秒前
自觉语琴完成签到 ,获得积分10
4秒前
Jasmineyfz完成签到 ,获得积分10
12秒前
豆腐青菜雨完成签到 ,获得积分10
14秒前
16秒前
玖月完成签到 ,获得积分10
23秒前
23秒前
果冻完成签到 ,获得积分10
23秒前
王昭完成签到 ,获得积分10
23秒前
李想发布了新的文献求助10
28秒前
weinaonao完成签到,获得积分10
28秒前
伯爵完成签到 ,获得积分10
30秒前
wdccx完成签到,获得积分10
32秒前
carlin完成签到,获得积分10
33秒前
北城完成签到 ,获得积分10
39秒前
土豆晴完成签到 ,获得积分10
40秒前
卡戎529完成签到 ,获得积分10
41秒前
可耐的问柳完成签到 ,获得积分10
41秒前
liujinjin完成签到,获得积分10
47秒前
研友_西门孤晴完成签到,获得积分10
49秒前
planto完成签到,获得积分10
52秒前
wonwojo完成签到 ,获得积分10
52秒前
dslnfakjnij完成签到 ,获得积分10
52秒前
科研通AI2S应助btk采纳,获得30
54秒前
鲁卓林完成签到,获得积分10
56秒前
Lee完成签到,获得积分20
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
ran完成签到 ,获得积分10
1分钟前
行走De太阳花完成签到,获得积分10
1分钟前
Hindiii完成签到,获得积分10
1分钟前
火星上的雨柏完成签到,获得积分10
1分钟前
Shabby0-0完成签到,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
liu完成签到,获得积分10
1分钟前
lx完成签到,获得积分10
1分钟前
她的城完成签到,获得积分0
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167428
捐赠科研通 3248822
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664