已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis

医学 类风湿性关节炎 痹症科 电子健康档案 接收机工作特性 物理疗法 疾病 内科学 健康档案 病历 人口统计学的 急诊医学 医疗保健 家庭医学 人口学 经济 社会学 经济增长
作者
Beau Norgeot,Benjamin S. Glicksberg,Laura Trupin,Dmytro Lituiev,Milena Gianfrancesco,Boris Oskotsky,Gabriela Schmajuk,Jinoos Yazdany,Atul J. Butte
出处
期刊:JAMA network open [American Medical Association]
卷期号:2 (3): e190606-e190606 被引量:176
标识
DOI:10.1001/jamanetworkopen.2019.0606
摘要

Knowing the future condition of a patient would enable a physician to customize current therapeutic options to prevent disease worsening, but predicting that future condition requires sophisticated modeling and information. If artificial intelligence models were capable of forecasting future patient outcomes, they could be used to aid practitioners and patients in prognosticating outcomes or simulating potential outcomes under different treatment scenarios.To assess the ability of an artificial intelligence system to prognosticate the state of disease activity of patients with rheumatoid arthritis (RA) at their next clinical visit.This prognostic study included 820 patients with RA from rheumatology clinics at 2 distinct health care systems with different electronic health record platforms: a university hospital (UH) and a public safety-net hospital (SNH). The UH and SNH had substantially different patient populations and treatment patterns. The UH has records on approximately 1 million total patients starting in January 2012. The UH data for this study were accessed on July 1, 2017. The SNH has records on 65 000 unique individuals starting in January 2013. The SNH data for the study were collected on February 27, 2018.Structured data were extracted from the electronic health record, including exposures (medications), patient demographics, laboratories, and prior measures of disease activity. A longitudinal deep learning model was used to predict disease activity for patients with RA at their next rheumatology clinic visit and to evaluate interhospital performance and model interoperability strategies.Model performance was quantified using the area under the receiver operating characteristic curve (AUROC). Disease activity in RA was measured using a composite index score.A total of 578 UH patients (mean [SD] age, 57 [15] years; 477 [82.5%] female; 296 [51.2%] white) and 242 SNH patients (mean [SD] age, 60 [15] years; 195 [80.6%] female; 30 [12.4%] white) were included in the study. Patients at the UH compared with those at the SNH were seen more frequently (median time between visits, 100 vs 180 days) and were more frequently prescribed higher-class medications (biologics) (364 [63.0%] vs 70 [28.9%]). At the UH, the model reached an AUROC of 0.91 (95% CI, 0.86-0.96) in a test cohort of 116 patients. The UH-trained model had an AUROC of 0.74 (95% CI, 0.65-0.83) in the SNH test cohort (n = 117) despite marked differences in the patient populations. In both settings, baseline prediction using each patients' most recent disease activity score had statistically random performance.The findings suggest that building accurate models to forecast complex disease outcomes using electronic health record data is possible and these models can be shared across hospitals with diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小叶完成签到 ,获得积分10
2秒前
踏实的傲白完成签到 ,获得积分10
3秒前
破晓发布了新的文献求助10
4秒前
5秒前
浮游应助牛奶味麻辣烫采纳,获得10
5秒前
7秒前
韩小小完成签到 ,获得积分10
8秒前
9秒前
9秒前
Hairee发布了新的文献求助50
10秒前
Jane发布了新的文献求助10
11秒前
12秒前
破晓完成签到,获得积分10
12秒前
13秒前
Nymeria发布了新的文献求助30
13秒前
怕孤独的聪展完成签到,获得积分10
14秒前
9464完成签到 ,获得积分10
14秒前
MrTStar完成签到 ,获得积分10
14秒前
dodo应助老鼠咕噜采纳,获得200
14秒前
15秒前
小马甲应助qwq采纳,获得10
16秒前
华仔应助小牙签哈哈哈采纳,获得10
16秒前
拼搏忆文发布了新的文献求助30
16秒前
小聪向前冲完成签到,获得积分10
17秒前
Mira完成签到,获得积分10
18秒前
浮游应助hunter采纳,获得10
18秒前
19秒前
小杭76应助缥缈千兰采纳,获得10
19秒前
畅快的虔纹完成签到,获得积分10
20秒前
20秒前
自觉凌蝶完成签到 ,获得积分10
20秒前
20秒前
21秒前
西瓜撞地球完成签到 ,获得积分10
23秒前
GS完成签到 ,获得积分10
23秒前
23秒前
anna完成签到,获得积分10
24秒前
25秒前
丁老三完成签到 ,获得积分10
26秒前
CD完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312379
求助须知:如何正确求助?哪些是违规求助? 4456101
关于积分的说明 13865341
捐赠科研通 4344497
什么是DOI,文献DOI怎么找? 2385924
邀请新用户注册赠送积分活动 1380277
关于科研通互助平台的介绍 1348681