Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis

医学 类风湿性关节炎 痹症科 电子健康档案 接收机工作特性 物理疗法 疾病 内科学 健康档案 病历 人口统计学的 急诊医学 医疗保健 家庭医学 人口学 经济 社会学 经济增长
作者
Beau Norgeot,Benjamin S. Glicksberg,Laura Trupin,Dmytro Lituiev,Milena Gianfrancesco,Boris Oskotsky,Gabriela Schmajuk,Jinoos Yazdany,Atul J. Butte
出处
期刊:JAMA network open [American Medical Association]
卷期号:2 (3): e190606-e190606 被引量:176
标识
DOI:10.1001/jamanetworkopen.2019.0606
摘要

Knowing the future condition of a patient would enable a physician to customize current therapeutic options to prevent disease worsening, but predicting that future condition requires sophisticated modeling and information. If artificial intelligence models were capable of forecasting future patient outcomes, they could be used to aid practitioners and patients in prognosticating outcomes or simulating potential outcomes under different treatment scenarios.To assess the ability of an artificial intelligence system to prognosticate the state of disease activity of patients with rheumatoid arthritis (RA) at their next clinical visit.This prognostic study included 820 patients with RA from rheumatology clinics at 2 distinct health care systems with different electronic health record platforms: a university hospital (UH) and a public safety-net hospital (SNH). The UH and SNH had substantially different patient populations and treatment patterns. The UH has records on approximately 1 million total patients starting in January 2012. The UH data for this study were accessed on July 1, 2017. The SNH has records on 65 000 unique individuals starting in January 2013. The SNH data for the study were collected on February 27, 2018.Structured data were extracted from the electronic health record, including exposures (medications), patient demographics, laboratories, and prior measures of disease activity. A longitudinal deep learning model was used to predict disease activity for patients with RA at their next rheumatology clinic visit and to evaluate interhospital performance and model interoperability strategies.Model performance was quantified using the area under the receiver operating characteristic curve (AUROC). Disease activity in RA was measured using a composite index score.A total of 578 UH patients (mean [SD] age, 57 [15] years; 477 [82.5%] female; 296 [51.2%] white) and 242 SNH patients (mean [SD] age, 60 [15] years; 195 [80.6%] female; 30 [12.4%] white) were included in the study. Patients at the UH compared with those at the SNH were seen more frequently (median time between visits, 100 vs 180 days) and were more frequently prescribed higher-class medications (biologics) (364 [63.0%] vs 70 [28.9%]). At the UH, the model reached an AUROC of 0.91 (95% CI, 0.86-0.96) in a test cohort of 116 patients. The UH-trained model had an AUROC of 0.74 (95% CI, 0.65-0.83) in the SNH test cohort (n = 117) despite marked differences in the patient populations. In both settings, baseline prediction using each patients' most recent disease activity score had statistically random performance.The findings suggest that building accurate models to forecast complex disease outcomes using electronic health record data is possible and these models can be shared across hospitals with diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
帅发发布了新的文献求助10
刚刚
splash完成签到,获得积分10
刚刚
jack潘发布了新的文献求助10
1秒前
3秒前
袁国惠发布了新的文献求助10
5秒前
5秒前
ttttt发布了新的文献求助10
6秒前
李健应助anny采纳,获得10
7秒前
阳光给阳光的求助进行了留言
7秒前
8秒前
杳鸢应助TT采纳,获得10
8秒前
飞飞deii应助TT采纳,获得10
8秒前
8秒前
llllissa发布了新的文献求助10
9秒前
sky关闭了sky文献求助
9秒前
fncs完成签到,获得积分10
9秒前
10秒前
我是老大应助jack潘采纳,获得10
11秒前
11秒前
weiwei完成签到,获得积分10
12秒前
杨榆藤完成签到,获得积分10
12秒前
胡大汉发布了新的文献求助10
14秒前
南风不竞发布了新的文献求助10
14秒前
小飞棍完成签到,获得积分10
14秒前
搜集达人应助史努比采纳,获得10
15秒前
ellen完成签到,获得积分10
15秒前
15秒前
Xue发布了新的文献求助10
15秒前
MQSY发布了新的文献求助10
15秒前
Betty发布了新的文献求助10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
tuanheqi应助科研通管家采纳,获得150
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
孤行者应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得30
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260739
求助须知:如何正确求助?哪些是违规求助? 2901859
关于积分的说明 8317799
捐赠科研通 2571583
什么是DOI,文献DOI怎么找? 1397109
科研通“疑难数据库(出版商)”最低求助积分说明 653642
邀请新用户注册赠送积分活动 632153