亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis

医学 类风湿性关节炎 痹症科 电子健康档案 接收机工作特性 物理疗法 疾病 内科学 健康档案 病历 人口统计学的 急诊医学 医疗保健 家庭医学 人口学 经济 社会学 经济增长
作者
Beau Norgeot,Benjamin S. Glicksberg,Laura Trupin,Dmytro Lituiev,Milena Gianfrancesco,Boris Oskotsky,Gabriela Schmajuk,Jinoos Yazdany,Atul J. Butte
出处
期刊:JAMA network open [American Medical Association]
卷期号:2 (3): e190606-e190606 被引量:176
标识
DOI:10.1001/jamanetworkopen.2019.0606
摘要

Knowing the future condition of a patient would enable a physician to customize current therapeutic options to prevent disease worsening, but predicting that future condition requires sophisticated modeling and information. If artificial intelligence models were capable of forecasting future patient outcomes, they could be used to aid practitioners and patients in prognosticating outcomes or simulating potential outcomes under different treatment scenarios.To assess the ability of an artificial intelligence system to prognosticate the state of disease activity of patients with rheumatoid arthritis (RA) at their next clinical visit.This prognostic study included 820 patients with RA from rheumatology clinics at 2 distinct health care systems with different electronic health record platforms: a university hospital (UH) and a public safety-net hospital (SNH). The UH and SNH had substantially different patient populations and treatment patterns. The UH has records on approximately 1 million total patients starting in January 2012. The UH data for this study were accessed on July 1, 2017. The SNH has records on 65 000 unique individuals starting in January 2013. The SNH data for the study were collected on February 27, 2018.Structured data were extracted from the electronic health record, including exposures (medications), patient demographics, laboratories, and prior measures of disease activity. A longitudinal deep learning model was used to predict disease activity for patients with RA at their next rheumatology clinic visit and to evaluate interhospital performance and model interoperability strategies.Model performance was quantified using the area under the receiver operating characteristic curve (AUROC). Disease activity in RA was measured using a composite index score.A total of 578 UH patients (mean [SD] age, 57 [15] years; 477 [82.5%] female; 296 [51.2%] white) and 242 SNH patients (mean [SD] age, 60 [15] years; 195 [80.6%] female; 30 [12.4%] white) were included in the study. Patients at the UH compared with those at the SNH were seen more frequently (median time between visits, 100 vs 180 days) and were more frequently prescribed higher-class medications (biologics) (364 [63.0%] vs 70 [28.9%]). At the UH, the model reached an AUROC of 0.91 (95% CI, 0.86-0.96) in a test cohort of 116 patients. The UH-trained model had an AUROC of 0.74 (95% CI, 0.65-0.83) in the SNH test cohort (n = 117) despite marked differences in the patient populations. In both settings, baseline prediction using each patients' most recent disease activity score had statistically random performance.The findings suggest that building accurate models to forecast complex disease outcomes using electronic health record data is possible and these models can be shared across hospitals with diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoya完成签到,获得积分10
2秒前
Ultraman45发布了新的文献求助10
5秒前
F_echo完成签到 ,获得积分10
19秒前
36秒前
36秒前
bbdd2334发布了新的文献求助10
43秒前
科目三应助lf采纳,获得10
50秒前
57秒前
科研通AI5应助瘦瘦的寒珊采纳,获得10
57秒前
lf发布了新的文献求助10
1分钟前
NanNan626完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助liudy采纳,获得10
1分钟前
1分钟前
沉默羔羊完成签到,获得积分10
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
阿九完成签到,获得积分10
1分钟前
NanNan626发布了新的文献求助30
2分钟前
然463完成签到 ,获得积分10
2分钟前
2分钟前
Hcc完成签到 ,获得积分10
2分钟前
2分钟前
风登楼发布了新的文献求助10
2分钟前
学术小白完成签到,获得积分10
2分钟前
2分钟前
婼汐完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Owen应助瘦瘦的寒珊采纳,获得10
2分钟前
2分钟前
活泼的冬寒完成签到,获得积分10
3分钟前
3分钟前
瘦瘦的寒珊完成签到,获得积分10
3分钟前
有魅力听枫完成签到,获得积分10
3分钟前
3分钟前
叶梓轩完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976643
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204613
捐赠科研通 3257484
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613