Convolutional Edge Constraint-Based U-Net for Salient Object Detection

计算机科学 人工智能 约束(计算机辅助设计) 目标检测 GSM演进的增强数据速率 对象(语法) 网(多面体) 突出 计算机视觉 模式识别(心理学) 数学 几何学
作者
Han Le,Xuelong Li,Yongsheng Dong
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 48890-48900 被引量:30
标识
DOI:10.1109/access.2019.2910572
摘要

The salient object detection is receiving more and more attention from researchers. An accurate saliency map will be useful for subsequent tasks. However, in most saliency maps predicted by existing models, the objects regions are very blurred and the edges of objects are irregular. The reason is that the hand-crafted features are the main basis for existing traditional methods to predict salient objects, which results in different pixels belonging to the same object often being predicted different saliency scores. Besides, the convolutional neural network (CNN)-based models predict saliency maps at patch scale, which causes the objects edges of the output to be fuzzy. In this paper, we attempt to add an edge convolution constraint to a modified U-Net to predict the saliency map of the image. The network structure we adopt can fuse the features of different layers to reduce the loss of information. Our SalNet predicts the saliency map pixel-by-pixel, rather than at the patch scale as the CNN-based models do. Moreover, in order to better guide the network mining the information of objects edges, we design a new loss function based on image convolution, which adds an L1 constraint to the edge information of saliency map and ground-truth. Finally, experimental results reveal that our SalNet is effective in salient object detection task and is also competitive when compared with 11 state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyh完成签到,获得积分10
1秒前
1秒前
玄风应助科研通管家采纳,获得10
1秒前
咚咚应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得30
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
JamesPei应助安全123采纳,获得10
2秒前
玄风应助科研通管家采纳,获得10
2秒前
nPgA2o应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
persist发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
玄风应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
木川发布了新的文献求助10
4秒前
ding应助myf采纳,获得10
4秒前
札七完成签到,获得积分10
4秒前
平常丝完成签到,获得积分10
4秒前
4秒前
猪猪发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
CodeCraft应助sct采纳,获得10
7秒前
夏d完成签到 ,获得积分10
7秒前
科研通AI2S应助怎么办采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545991
求助须知:如何正确求助?哪些是违规求助? 4631933
关于积分的说明 14623692
捐赠科研通 4573623
什么是DOI,文献DOI怎么找? 2507694
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455637