Convolutional Edge Constraint-Based U-Net for Salient Object Detection

计算机科学 人工智能 约束(计算机辅助设计) 目标检测 GSM演进的增强数据速率 对象(语法) 网(多面体) 突出 计算机视觉 模式识别(心理学) 数学 几何学
作者
Han Le,Xuelong Li,Yongsheng Dong
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 48890-48900 被引量:30
标识
DOI:10.1109/access.2019.2910572
摘要

The salient object detection is receiving more and more attention from researchers. An accurate saliency map will be useful for subsequent tasks. However, in most saliency maps predicted by existing models, the objects regions are very blurred and the edges of objects are irregular. The reason is that the hand-crafted features are the main basis for existing traditional methods to predict salient objects, which results in different pixels belonging to the same object often being predicted different saliency scores. Besides, the convolutional neural network (CNN)-based models predict saliency maps at patch scale, which causes the objects edges of the output to be fuzzy. In this paper, we attempt to add an edge convolution constraint to a modified U-Net to predict the saliency map of the image. The network structure we adopt can fuse the features of different layers to reduce the loss of information. Our SalNet predicts the saliency map pixel-by-pixel, rather than at the patch scale as the CNN-based models do. Moreover, in order to better guide the network mining the information of objects edges, we design a new loss function based on image convolution, which adds an L1 constraint to the edge information of saliency map and ground-truth. Finally, experimental results reveal that our SalNet is effective in salient object detection task and is also competitive when compared with 11 state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aking完成签到,获得积分10
1秒前
2秒前
浮游应助陈思采纳,获得10
2秒前
Deseorz完成签到 ,获得积分20
2秒前
lidianji122发布了新的文献求助10
4秒前
4秒前
5秒前
浮游应助hhhh采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
8秒前
DittO完成签到,获得积分20
8秒前
Catalina_S应助科研通管家采纳,获得20
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得20
8秒前
Zx_1993应助科研通管家采纳,获得20
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
图图应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
TYMY应助科研通管家采纳,获得30
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
莱十一发布了新的文献求助10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337