已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence

氨基酸 自然声音 钢琴 计算机科学 人工神经网络 语调(文学) 代表(政治) 生物系统 生物 语音识别 声学 人工智能 生物化学 物理 政治 政治学 文学类 艺术 法学
作者
Chi-Hua Yu,Zhao Qin,Francisco J. Martín‐Martínez,Markus J. Buehler
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (7): 7471-7482 被引量:109
标识
DOI:10.1021/acsnano.9b02180
摘要

We report a self-consistent method to translate amino acid sequences into audible sound, use the representation in the musical space to train a neural network, and then apply it to generate protein designs using artificial intelligence (AI). The sonification method proposed here uses the normal mode vibrations of the amino acid building blocks of proteins to compute an audible representation of each of the 20 natural amino acids, which is fully defined by the overlay of its respective natural vibrations. The vibrational frequencies are transposed to the audible spectrum following the musical concept of transpositional equivalence, playing or writing music in a way that makes it sound higher or lower in pitch while retaining the relationships between tones or chords played. This transposition method ensures that the relative values of the vibrational frequencies within each amino acid and among different amino acids are retained. The characteristic frequency spectrum and sound associated with each of the amino acids represents a type of musical scale that consists of 20 tones, the "amino acid scale". To create a playable instrument, each tone associated with the amino acids is assigned to a specific key on a piano roll, which allows us to map the sequence of amino acids in proteins into a musical score. To reflect higher-order structural details of proteins, the volume and duration of the notes associated with each amino acid are defined by the secondary structure of proteins, computed using DSSP and thereby introducing musical rhythm. We then train a recurrent neural network based on a large set of musical scores generated by this sonification method and use AI to generate musical compositions, capturing the innate relationships between amino acid sequence and protein structure. We then translate the de novo musical data generated by AI into protein sequences, thereby obtaining de novo protein designs that feature specific design characteristics. We illustrate the approach in several examples that reflect the sonification of protein sequences, including multihour audible representations of natural proteins and protein-based musical compositions solely generated by AI. The approach proposed here may provide an avenue for understanding sequence patterns, variations, and mutations and offers an outreach mechanism to explain the significance of protein sequences. The method may also offer insight into protein folding and understanding the context of the amino acid sequence in defining the secondary and higher-order folded structure of proteins and could hence be used to detect the effects of mutations through sound.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chxxxxx完成签到,获得积分10
1秒前
huahero2025应助科研通管家采纳,获得30
1秒前
NexusExplorer应助大智若愚啊采纳,获得10
1秒前
斯寜应助科研通管家采纳,获得10
1秒前
huahero2025应助科研通管家采纳,获得50
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
斯寜应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
3秒前
5秒前
英俊的铭应助秋鱼采纳,获得30
5秒前
小二郎应助ShiRz采纳,获得10
11秒前
Niu发布了新的文献求助10
11秒前
谨慎萤完成签到,获得积分20
13秒前
13秒前
李爱国应助Artifica采纳,获得10
14秒前
高高一刀发布了新的文献求助10
16秒前
19秒前
秋鱼完成签到,获得积分10
21秒前
21秒前
22秒前
wangzhihui发布了新的文献求助10
23秒前
24秒前
24秒前
谨慎萤发布了新的文献求助10
24秒前
gexiaoyang发布了新的文献求助10
28秒前
柚子肉发布了新的文献求助10
29秒前
29秒前
Jay发布了新的文献求助10
29秒前
香蕉觅云应助谨慎萤采纳,获得10
30秒前
wangzhihui完成签到,获得积分20
36秒前
云风发布了新的文献求助10
36秒前
orixero应助小白采纳,获得10
38秒前
FYhan完成签到 ,获得积分10
39秒前
科研顺利完成签到,获得积分10
40秒前
赘婿应助包容溪灵采纳,获得10
42秒前
传奇3应助李...采纳,获得10
42秒前
bkagyin应助云风采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 330
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753544
求助须知:如何正确求助?哪些是违规求助? 3297104
关于积分的说明 10097476
捐赠科研通 3011817
什么是DOI,文献DOI怎么找? 1654266
邀请新用户注册赠送积分活动 788720
科研通“疑难数据库(出版商)”最低求助积分说明 752966