材料科学
外延
卤化物
光伏
光电子学
四方晶系
锡
钙钛矿(结构)
纳米技术
晶体结构
无机化学
结晶学
光伏系统
图层(电子)
化学
冶金
生物
生态学
作者
Lili Wang,Pei Chen,Padmanaban S. Kuttipillai,Isaac King,Richard J. Staples,Kai Sun,Richard R. Lunt
标识
DOI:10.1021/acsami.9b05592
摘要
A full range of optoelectronic devices has been demonstrated incorporating hybrid organic-inorganic halide perovskites including high-performance photovoltaics, light emitting diodes, and lasers. Tin-based inorganic halide perovskites, such as CsSnX3 (X = Cl, Br, I), have been studied as promising candidates that avoid toxic lead halide compositions. One of the main obstacles for improving the properties of all-inorganic perovskites and transitioning their use to high-end electronic applications is obtaining crystalline thin films with minimal crystal defects, despite their reputation for defect tolerance in photovoltaic applications. In this study, the single-domain epitaxial growth of cesium tin iodide (CsSnI3) on closely lattice matched single-crystal potassium chloride (KCl) substrates is demonstrated. Using in situ real-time diffraction techniques, we find a new epitaxially-stabilized tetragonal phase at room temperature that expands the possibility for controlling electronic properties. We also exploit controllable epitaxy to grow multilayer two-dimensional quantum wells and demonstrate epitaxial films in a lateral photodetector architecture. This work provides insight into the phase control during halide perovskite epitaxy and expands the selection of epitaxially accessible materials from this exciting class of compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI