迭代学习控制
多智能体系统
李普希茨连续性
共识
计算机科学
协议(科学)
控制理论(社会学)
非线性系统
方案(数学)
控制(管理)
规范(哲学)
数学
人工智能
法学
数学分析
病理
物理
政治学
替代医学
医学
量子力学
作者
Xisheng Dai,Cun Wang,Senping Tian,Qingnan Huang
标识
DOI:10.1016/j.jfranklin.2019.05.015
摘要
Most of the available results of iterative learning control (ILC) are that solve the consensus problem of lumped parameter models multi-agent systems. This paper considers the consensus control problem of distributed parameter models multi-agent systems with time-delay. By using the knowledge between neighboring agents, considering time-delay problem in the multi-agent systems, a distributed P-type iterative learning control protocol is proposed. The consensus error between any two agents in the sense of L2 norm can converge to zero after enough iterations based on proposed ILC law. And then we extend these conclusions to Lipschitz nonlinear case. Finally, the simulation result shows the effectiveness of the control method.
科研通智能强力驱动
Strongly Powered by AbleSci AI