A 18F-FDG PET/CT-based radiomics model predicts prognosis of synchronous oligometastatic non-small cell lung cancer.

医学 无线电技术 比例危险模型 肺癌 多元统计 多元分析 正电子发射断层摄影术 放射科 肿瘤科 一致性 内科学 机器学习 计算机科学
作者
Xiaoxia Zhu,Yu Zhang,Zhihao Zheng,Jiaxiu Luo
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:37 (15_suppl): e20610-e20610
标识
DOI:10.1200/jco.2019.37.15_suppl.e20610
摘要

e20610 Background: Oligometastatic non-small cell lung cancer (NSCLC) exists high heterogeneity with distinct outcome, and there is a lack of available biomarkers for patient stratification. In this study, we identified a positron emission tomography (PET)/computed tomography(CT)-based radiomics signature capable of predicting overall survival (OS) in patients with synchronous oligometastatic NSCLC. Methods: This study consisted of 46 patients with synchronous oligometastatic NSCLC (≤5 metastases) between 2012-2018. Clinicopathologic data was acquired from medical records and database. A total of 20648 radiomic features were extracted from pretreatment CT and PET images, which were generated from the same PET/CT scanner. A radiomics signature was built by using the least absolute shrinkage and selection operator (LASSO) regression model. Multivariate Cox regression analysis was performed to establish the predictive model. The performance was evaluated with Harrell' concordance index (C-index). Results: 7 radiomics features were selected to build the radiomics signature. Multivariate analysis indicated that the radiomics signature (P = 0.007) was an independent prognostic factor, with a C-index of 0.810. Smoking status (P = 0.01) was the only independent clinicopathologic risk factor for overall survival prediction. Incorporating the radiomics signature with clinicopathologic risk factors resulted in higher performance with a C-index of 0.899. Conclusions: This study developed a radiomics model for predicting OS in synchronous oligometastatic NSCLC, which may serve as a predictive tool to identify individualized treatment strategy. Further internal and external validation of the model are required. Support: 81572279, 2016J004, LC2016PY016, 2018CR033. [Table: see text]

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
科研通AI2S应助Jeff采纳,获得10
6秒前
damian完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
10秒前
可爱的函函应助Grinde采纳,获得10
10秒前
哈哈发布了新的文献求助10
12秒前
能干的月光完成签到,获得积分10
12秒前
13秒前
wisdom2wisdom发布了新的文献求助10
13秒前
欢呼易形完成签到 ,获得积分10
13秒前
make发布了新的文献求助10
14秒前
15秒前
无奈雅霜发布了新的文献求助30
18秒前
Orange应助lei采纳,获得10
19秒前
默默善愁发布了新的文献求助30
20秒前
Alicia完成签到,获得积分10
22秒前
Orange应助土书采纳,获得30
25秒前
wisdom2wisdom完成签到,获得积分10
26秒前
哈哈完成签到,获得积分10
28秒前
开放草莓完成签到 ,获得积分10
28秒前
29秒前
30秒前
33秒前
叶子发布了新的文献求助10
37秒前
丫丫完成签到 ,获得积分10
39秒前
活泼的冬易完成签到,获得积分10
39秒前
俊逸书琴发布了新的文献求助10
40秒前
vousmevoyez_完成签到,获得积分20
42秒前
43秒前
coollzl完成签到 ,获得积分10
45秒前
樊焕焕完成签到,获得积分20
45秒前
无私的砖头完成签到 ,获得积分10
46秒前
科研菜鸟发布了新的文献求助10
47秒前
ccc发布了新的文献求助10
50秒前
gengxw完成签到,获得积分10
54秒前
活泼的修杰完成签到 ,获得积分10
54秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560699
求助须知:如何正确求助?哪些是违规求助? 4646016
关于积分的说明 14676918
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516822
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136