养生
髓系白血病
危险系数
内科学
医学
肿瘤科
诱导化疗
白血病
多元分析
置信区间
化疗
癌症研究
生物
免疫学
作者
Yu-Chiao Chiu,Tzu‐Hung Hsiao,Jia‐Rong Tsai,Li‐Ju Wang,Tzu‐Chieh Ho,Shih‐Lan Hsu,Chieh‐Lin Jerry Teng
摘要
This study explored resistance functions and their interactions in de novo AML treated with the "7 + 3" induction regimen.We analyzed RNA-sequencing profiles of whole bone marrow samples from 52 de novo AML patients who completed the "7 + 3" regimen and stratified patients into CR (n = 35) and non-CR (n = 17) groups.A systematic gene set analysis revealed significant associations between chemoresistance and mTOR (P < .001), myc (P < .001), mitochondrial oxidative phosphorylation (P < .001), and stemness (P = .002). These functions were independent with regard to gene contents and activity scores. An integration of these four functions showed a prediction of chemoresistance (area under the receiver operating characteristic curve = 0.815) superior to that of each function alone. Moreover, our proposed seven-gene scoring system significantly correlated with the four-function model (r = .97; P < .001) to predict chemoresistance to the "7 + 3" regimen. On multivariate analysis, a seven-gene score of ≥-0.027 (hazard ratio: 11.18; 95% confidence interval: 2.06-60.65; P = .005) was an independent risk factor for induction failure.Myc, OXPHOS, mTOR, and stemness were responsive for chemoresistance in AML. Treatments other than the "7 + 3" regimen need to be considered for de novo AML patients predicted to be refractory to the "7 + 3" regimen.
科研通智能强力驱动
Strongly Powered by AbleSci AI