A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy

胶囊内镜 医学 卷积神经网络 人工智能 分割 算法 放射科 计算机科学
作者
Romain Leenhardt,Pauline Vasseur,Cynthia Li,Jean Christophe Saurin,Gabriel Rahmi,Franck Cholet,Aymeric Becq,Philippe Marteau,Aymeric Histace,Xavier Dray,Sylvie Sacher‐Huvelin,Farida Mesli,Chloé Leandri,Isabelle Nion–Larmurier,Stéphane Lecleire,Romain Gérard,Clotilde Duburque,Geoffroy Vanbiervliet,Xavier Amiot,Jean Philippe Le Mouel,Michel Delvaux,P Jacob,Camille Simon-Shane,Olivier Romain
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:89 (1): 189-194 被引量:163
标识
DOI:10.1016/j.gie.2018.06.036
摘要

Background and Aims GI angiectasia (GIA) is the most common small-bowel (SB) vascular lesion, with an inherent risk of bleeding. SB capsule endoscopy (SB-CE) is the currently accepted diagnostic procedure. The aim of this study was to develop a computer-assisted diagnosis tool for the detection of GIA. Methods Deidentified SB-CE still frames featuring annotated typical GIA and normal control still frames were selected from a database. A semantic segmentation images approach associated with a convolutional neural network (CNN) was used for deep-feature extractions and classification. Two datasets of still frames were created and used for machine learning and for algorithm testing. Results The GIA detection algorithm yielded a sensitivity of 100%, a specificity of 96%, a positive predictive value of 96%, and a negative predictive value of 100%. Reproducibility was optimal. The reading process for an entire SB-CE video would take 39 minutes. Conclusions The developed CNN-based algorithm had high diagnostic performances, allowing detection of GIA in SB-CE still frames. This study paves the way for future automated CNN-based SB-CE reading softwares. GI angiectasia (GIA) is the most common small-bowel (SB) vascular lesion, with an inherent risk of bleeding. SB capsule endoscopy (SB-CE) is the currently accepted diagnostic procedure. The aim of this study was to develop a computer-assisted diagnosis tool for the detection of GIA. Deidentified SB-CE still frames featuring annotated typical GIA and normal control still frames were selected from a database. A semantic segmentation images approach associated with a convolutional neural network (CNN) was used for deep-feature extractions and classification. Two datasets of still frames were created and used for machine learning and for algorithm testing. The GIA detection algorithm yielded a sensitivity of 100%, a specificity of 96%, a positive predictive value of 96%, and a negative predictive value of 100%. Reproducibility was optimal. The reading process for an entire SB-CE video would take 39 minutes. The developed CNN-based algorithm had high diagnostic performances, allowing detection of GIA in SB-CE still frames. This study paves the way for future automated CNN-based SB-CE reading softwares.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研途完成签到,获得积分20
1秒前
1秒前
研友_ZAxKMn发布了新的文献求助10
3秒前
3秒前
4秒前
DLQ完成签到,获得积分10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
ED应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
djiwisksk66应助科研通管家采纳,获得10
7秒前
7秒前
核桃应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
djiwisksk66应助科研通管家采纳,获得10
7秒前
张凯茜发布了新的文献求助10
8秒前
SYLH应助动听凝安采纳,获得10
8秒前
Yeyuntian完成签到 ,获得积分10
8秒前
Yeyuntian完成签到 ,获得积分10
8秒前
函数完成签到 ,获得积分10
9秒前
wen发布了新的文献求助10
9秒前
共享精神应助洺全采纳,获得10
9秒前
Miuca发布了新的文献求助10
10秒前
上官若男应助GZ了呀采纳,获得10
12秒前
12秒前
领导范儿应助科研小白鼠采纳,获得30
14秒前
Singularity应助阿敬采纳,获得10
14秒前
混子发布了新的文献求助10
15秒前
000000完成签到,获得积分10
16秒前
16秒前
jj发布了新的文献求助10
20秒前
眼睛大雨筠应助YJL采纳,获得20
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565