回顾性分析
有机溶剂
干预(咨询)
计算机科学
机器人学
流量(数学)
序列(生物学)
人工智能
有机合成
化学
机器学习
机器人
工程类
数学
化学工程
有机化学
精神科
催化作用
几何学
生物化学
全合成
心理学
作者
Connor W. Coley,Dale A. Thomas,Justin A. M. Lummiss,Jonathan N. Jaworski,C. Breen,Victor Schultz,Travis Hart,Joshua Fishman,Luke Rogers,Hanyu Gao,Robert W. Hicklin,Pieter Plehiers,Joshua Byington,John S. Piotti,William H. Green,A. John Hart,Timothy F. Jamison,Klavs F. Jensen
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2019-08-08
卷期号:365 (6453)
被引量:799
标识
DOI:10.1126/science.aax1566
摘要
Pairing prediction and robotic synthesis Progress in automated synthesis of organic compounds has been proceeding along parallel tracks. One goal is algorithmic prediction of viable routes to a desired compound; the other is implementation of a known reaction sequence on a platform that needs little to no human intervention. Coley et al. now report preliminary integration of these two protocols. They paired a retrosynthesis prediction algorithm with a robotically reconfigurable flow apparatus. Human intervention was still required to supplement the predictor with practical considerations such as solvent choice and precise stoichiometry, although predictions should improve as accessible data accumulate for training. Science , this issue p. eaax1566
科研通智能强力驱动
Strongly Powered by AbleSci AI