Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding

炎症体 吡喃结构域 NLRP1 细胞生物学 生物 IRF4公司 癌症研究 炎症 遗传学 免疫学 程序性细胞死亡 转录因子 半胱氨酸蛋白酶 基因 细胞凋亡
作者
Franklin L. Zhong,Kim Robinson,Daniel Eng Thiam Teo,Kian-Lee Tan,Chrissie Lim,Cassandra R. Harapas,Chien-Hsiung Yu,William H Xie,Radoslaw M. Sobota,Bijin Au,Richard A. Hopkins,Andrea D’Osualdo,John C. Reed,John E. Connolly,Seth L. Masters,Bruno Reversade
出处
期刊:Journal of Biological Chemistry [Elsevier]
卷期号:293 (49): 18864-18878 被引量:177
标识
DOI:10.1074/jbc.ra118.004350
摘要

The inflammasome is a critical molecular complex that activates interleukin-1 driven inflammation in response to pathogen- and danger-associated signals. Germline mutations in the inflammasome sensor NLRP1 cause Mendelian systemic autoimmunity and skin cancer susceptibility, but its endogenous regulation remains less understood. Here we use a proteomics screen to uncover dipeptidyl dipeptidase DPP9 as a novel interacting partner with human NLRP1 and a related inflammasome regulator, CARD8. DPP9 functions as an endogenous inhibitor of NLRP1 inflammasome in diverse primary cell types from human and mice. DPP8/9 inhibition via small molecule drugs and CRISPR/Cas9-mediated genetic deletion specifically activate the human NLRP1 inflammasome, leading to ASC speck formation, pyroptotic cell death, and secretion of cleaved interleukin-1β. Mechanistically, DPP9 interacts with a unique autoproteolytic domain (Function to Find Domain (FIIND)) found in NLRP1 and CARD8. This scaffolding function of DPP9 and its catalytic activity act synergistically to maintain NLRP1 in its inactive state and repress downstream inflammasome activation. We further identified a single patient-derived germline missense mutation in the NLRP1 FIIND domain that abrogates DPP9 binding, leading to inflammasome hyperactivation seen in the Mendelian autoinflammatory disease Autoinflammation with Arthritis and Dyskeratosis. These results unite recent findings on the regulation of murine Nlrp1b by Dpp8/9 and uncover a new regulatory mechanism for the NLRP1 inflammasome in primary human cells. Our results further suggest that DPP9 could be a multifunctional inflammasome regulator involved in human autoinflammatory diseases. The inflammasome is a critical molecular complex that activates interleukin-1 driven inflammation in response to pathogen- and danger-associated signals. Germline mutations in the inflammasome sensor NLRP1 cause Mendelian systemic autoimmunity and skin cancer susceptibility, but its endogenous regulation remains less understood. Here we use a proteomics screen to uncover dipeptidyl dipeptidase DPP9 as a novel interacting partner with human NLRP1 and a related inflammasome regulator, CARD8. DPP9 functions as an endogenous inhibitor of NLRP1 inflammasome in diverse primary cell types from human and mice. DPP8/9 inhibition via small molecule drugs and CRISPR/Cas9-mediated genetic deletion specifically activate the human NLRP1 inflammasome, leading to ASC speck formation, pyroptotic cell death, and secretion of cleaved interleukin-1β. Mechanistically, DPP9 interacts with a unique autoproteolytic domain (Function to Find Domain (FIIND)) found in NLRP1 and CARD8. This scaffolding function of DPP9 and its catalytic activity act synergistically to maintain NLRP1 in its inactive state and repress downstream inflammasome activation. We further identified a single patient-derived germline missense mutation in the NLRP1 FIIND domain that abrogates DPP9 binding, leading to inflammasome hyperactivation seen in the Mendelian autoinflammatory disease Autoinflammation with Arthritis and Dyskeratosis. These results unite recent findings on the regulation of murine Nlrp1b by Dpp8/9 and uncover a new regulatory mechanism for the NLRP1 inflammasome in primary human cells. Our results further suggest that DPP9 could be a multifunctional inflammasome regulator involved in human autoinflammatory diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻嘻嘻关注了科研通微信公众号
刚刚
1秒前
充电宝应助不知名选手采纳,获得10
1秒前
光亮妙之发布了新的文献求助20
1秒前
亦hcy完成签到,获得积分10
2秒前
神游的完成签到,获得积分10
2秒前
清漪发布了新的文献求助10
3秒前
arui发布了新的文献求助10
3秒前
VDC应助炙热的若枫采纳,获得30
3秒前
5秒前
5秒前
6秒前
6秒前
kekao发布了新的文献求助10
6秒前
Shantx完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI5应助DKW采纳,获得10
8秒前
LM879应助含蓄的小熊猫采纳,获得10
8秒前
9秒前
乐乐应助蒸蒸日上采纳,获得10
9秒前
9秒前
9秒前
10秒前
drew发布了新的文献求助10
10秒前
Daodao发布了新的文献求助30
10秒前
11秒前
douKY完成签到,获得积分0
11秒前
11秒前
crown1010发布了新的文献求助10
11秒前
12秒前
12秒前
wzx发布了新的文献求助10
12秒前
藤藤完成签到,获得积分10
12秒前
丘比特应助秋毫之末采纳,获得10
13秒前
现代雪柳发布了新的文献求助10
13秒前
13秒前
Vision发布了新的文献求助10
13秒前
ayayaya发布了新的文献求助10
14秒前
自由溪灵发布了新的文献求助10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490478
求助须知:如何正确求助?哪些是违规求助? 3077363
关于积分的说明 9148738
捐赠科研通 2769585
什么是DOI,文献DOI怎么找? 1519841
邀请新用户注册赠送积分活动 704315
科研通“疑难数据库(出版商)”最低求助积分说明 702130