结晶度
材料科学
摩尔质量
韧性
复合材料
极限抗拉强度
聚乙烯
应变硬化指数
结晶
质量分数
玻璃化转变
变形(气象学)
聚合物
化学
有机化学
作者
Ali Moyassari,Thomas Gkourmpis,Mikael S. Hedenqvist,Ulf W. Gedde
出处
期刊:Polymer
[Elsevier]
日期:2018-12-09
卷期号:161: 139-150
被引量:57
标识
DOI:10.1016/j.polymer.2018.12.012
摘要
Blending different molar mass fractions of polyethylene (PE) in order to obtain materials with higher fracture toughness has previously proven beneficial. Our approach has been to use coarse-grained (CG) molecular dynamics (MD) simulations to obtain semicrystalline polyethylene systems on a nanoscale, and then draw them in order to mimic tensile testing. The CG potentials were derived, validated and utilized to simulate melt equilibration, cooling, crystallization and mechanical deformation. Crystallinity, tie chain and entanglement concentrations were continuously monitored. During crystallization, the low molar mass fraction disentangled to a greater degree and ended up with a lower entanglement density than the high molar mass fraction, although the tie chain concentration was higher for the low molar mass fraction. The deformation behavior of semicrystalline PE above its glass transition temperature was then assessed in a uniaxial tensile deformation simulation. The low-strain mechanical properties (i.e. elastic modulus, yield stress and strain) were in accordance with the literature. The high-strain mechanical features and toughness were improved in bimodal systems. The presence of a high molar mass fraction in bimodal systems was shown to affect the crystallinity and tie chain concentration during the strain hardening, leading to tougher model systems. Finally, the bimodal system with equal shares of the molar mass fractions showed the highest toughness and the best ultimate mechanical properties while having a concentration of tie chains and entanglements intermediate between the values for the other systems. This was a clear sign of the non-exclusive role of tie chains and entanglements in the mechanical behavior of bimodal PE and more generally of semicrystalline polymers at high strains.
科研通智能强力驱动
Strongly Powered by AbleSci AI