Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools

离散化 搭配(遥感) 反褶积 径向基函数 计算机科学 算法 基函数 分段 收敛速度 应用数学 连续特征的离散化 放松(心理学) 数学分析 数学 数学优化 人工神经网络 人工智能 离散化误差 机器学习 心理学 计算机网络 频道(广播) 社会心理学
作者
Ting Hei Wan,Mattia Saccoccio,Chi Chen,Francesco Ciucci
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:184: 483-499 被引量:1182
标识
DOI:10.1016/j.electacta.2015.09.097
摘要

The distribution of relaxation times (DRT) is an approach that can extract time characteristics of an electrochemical system from electrochemical impedance spectroscopy (EIS) measurements. Computing the DRT is difficult because it is an intrinsically ill-posed problem often requiring regularization. In order to improve the estimation of the DRT and to better control its error, a suitable discretization basis for the regularized regression needs to be chosen. However, this aspect has been invariably overlooked in the specialized literature. Pseudo-spectral methods using radial basis functions (RBFs) are, in principle, a better choice in comparison to other discretization basis, such as piecewise linear (PWL) functions, because they may achieve fast convergence. Furthermore, they can yield improved estimation by extending the estimated DRT to the entire frequency spectrum, if the underlying DRT decays to zero sufficiently fast outside the measured frequency range. Additionally, their implementation is relatively easier than other types of pseudo-spectral methods since they do not require ad hoc collocation point distributions. The as-developed novel RBF-based DRT framework was tested against controlled synthetic EIS spectra and real experimental data. Our results indicate that the RBF discretization performance is comparable with that of the PWL discretization at normal data collection range, and with improvement when the EIS acquisition is incomplete. In addition, we also show that applying RBF discretization for deconvolving the DRT problem can lead to faster numerical convergence rate as compared with that of PWL discretization only at error free situation. As a companion to this work we have developed a MATLAB GUI toolbox, which can be used to solve DRT regularization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Quan关注了科研通微信公众号
1秒前
3秒前
科研通AI2S应助失眠班采纳,获得10
3秒前
陈小宇kk完成签到,获得积分10
4秒前
4秒前
4秒前
香蕉觅云应助yunyii采纳,获得10
4秒前
5秒前
7秒前
7秒前
zhu发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
hh发布了新的文献求助10
11秒前
小太阳发布了新的文献求助10
11秒前
风再起时发布了新的文献求助10
12秒前
汉堡包应助de采纳,获得10
13秒前
13秒前
13秒前
yan完成签到,获得积分10
14秒前
14秒前
14秒前
curryif发布了新的文献求助10
15秒前
一只柴发布了新的文献求助10
15秒前
高刘田完成签到 ,获得积分10
16秒前
mw关闭了mw文献求助
16秒前
16秒前
盼盼完成签到 ,获得积分10
17秒前
18秒前
loulan发布了新的文献求助10
18秒前
18秒前
18秒前
bkagyin应助小太阳采纳,获得10
19秒前
科研通AI2S应助bai采纳,获得10
19秒前
Amour发布了新的文献求助10
19秒前
neinei发布了新的文献求助10
19秒前
Zed发布了新的文献求助10
19秒前
20秒前
SKZ发布了新的文献求助10
21秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129128
求助须知:如何正确求助?哪些是违规求助? 2779966
关于积分的说明 7745466
捐赠科研通 2435144
什么是DOI,文献DOI怎么找? 1293924
科研通“疑难数据库(出版商)”最低求助积分说明 623474
版权声明 600542