Use of Artificial Neural Networks to Predict the Progression of Glaucoma in Patients with Sleep Apnea

青光眼 医学 人工神经网络 多层感知器 睡眠呼吸暂停 眼压 呼吸暂停 机器学习 心脏病学 人工智能 内科学 眼科 计算机科学
作者
Nicoleta Anton,Catălin Lisa,Bogdan Doroftei,Silvia Curteanu,Camelia Margareta Bogdănici,D Chiseliţă,Daniel Brănişteanu,Ionela Nechita-Dumitriu,Ovidiu-Dumitru Ilie,Roxana Elena Ciuntu
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (12): 6061-6061 被引量:6
标识
DOI:10.3390/app12126061
摘要

Aim: To construct neural models to predict the progression of glaucoma in patients with sleep apnea. Materials and Methods: Modeling the use of neural networks was performed using the Neurosolutions commercial simulator. The built databases gather information on a group of patients with primitive open-angle glaucoma and normal-tension glaucoma, who have been associated with sleep apnea syndrome and various stages of disease severity. The data within the database were divided as follows: 65 were used in the neural network training stage and 8 were kept for the validation stage. In total, 21 parameters were selected as input parameters for neural models including: age of patients, BMI (body mass index), systolic and diastolic blood pressure, intraocular pressure, central corneal thickness, corneal biomechanical parameters (IOPcc, HC, CRF), AHI, desaturation index, nocturnal oxygen saturation, remaining AHI, type of apnea, and associated general conditions (diabetes, hypertension, obesity, COPD). The selected output parameters are: c/d ratio, modified visual field parameters (MD, PSD), ganglion cell layer thickness. Forward-propagation neural networks (multilayer perceptron) were constructed with a layer of hidden neurons. The constructed neural models generated the output values for these data. The obtained results were then compared with the experimental values. Results: The best results were obtained during the training stage with the ANN network (21:35:4). If we consider a 25% confidence interval, we find that very good results are obtained during the validation stage, except for the average GCL thickness, for which the errors are slightly higher. Conclusions: Excellent results were obtained during the validation stage, which support the results obtained in other studies in the literature that strengthen the connection between sleep apnea syndrome and glaucoma changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQW完成签到,获得积分20
刚刚
1秒前
plant完成签到,获得积分10
1秒前
lyt完成签到,获得积分10
1秒前
2秒前
3秒前
敏感网络完成签到,获得积分20
4秒前
kh453发布了新的文献求助10
4秒前
4秒前
子爵木完成签到 ,获得积分10
4秒前
HC发布了新的文献求助30
5秒前
无限鞅发布了新的文献求助10
5秒前
SherlockLiu完成签到,获得积分20
5秒前
6秒前
吴岳发布了新的文献求助10
7秒前
陆靖易完成签到,获得积分10
7秒前
9秒前
Bella完成签到 ,获得积分10
9秒前
yhl发布了新的文献求助10
10秒前
11秒前
震动的乐天完成签到,获得积分10
12秒前
13秒前
14秒前
Hello应助xuanxuan采纳,获得10
15秒前
村长热爱美丽完成签到 ,获得积分10
15秒前
一衣完成签到,获得积分20
15秒前
15秒前
17秒前
明理世倌发布了新的文献求助10
17秒前
今后应助niu1采纳,获得10
18秒前
KONG发布了新的文献求助10
18秒前
爆米花应助成梦采纳,获得10
18秒前
yhl完成签到,获得积分20
19秒前
皮皮发布了新的文献求助10
20秒前
圆圆的脑袋应助SCISSH采纳,获得10
21秒前
阳光的雁山完成签到,获得积分10
21秒前
霖宸羽完成签到,获得积分10
22秒前
24秒前
无奈的代珊完成签到 ,获得积分10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808