Use of Artificial Neural Networks to Predict the Progression of Glaucoma in Patients with Sleep Apnea

青光眼 医学 人工神经网络 多层感知器 睡眠呼吸暂停 眼压 呼吸暂停 机器学习 心脏病学 人工智能 内科学 眼科 计算机科学
作者
Nicoleta Anton,Catălin Lisa,Bogdan Doroftei,Silvia Curteanu,Camelia Margareta Bogdănici,D Chiseliţă,Daniel Brănişteanu,Ionela Nechita-Dumitriu,Ovidiu-Dumitru Ilie,Roxana Elena Ciuntu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 6061-6061 被引量:6
标识
DOI:10.3390/app12126061
摘要

Aim: To construct neural models to predict the progression of glaucoma in patients with sleep apnea. Materials and Methods: Modeling the use of neural networks was performed using the Neurosolutions commercial simulator. The built databases gather information on a group of patients with primitive open-angle glaucoma and normal-tension glaucoma, who have been associated with sleep apnea syndrome and various stages of disease severity. The data within the database were divided as follows: 65 were used in the neural network training stage and 8 were kept for the validation stage. In total, 21 parameters were selected as input parameters for neural models including: age of patients, BMI (body mass index), systolic and diastolic blood pressure, intraocular pressure, central corneal thickness, corneal biomechanical parameters (IOPcc, HC, CRF), AHI, desaturation index, nocturnal oxygen saturation, remaining AHI, type of apnea, and associated general conditions (diabetes, hypertension, obesity, COPD). The selected output parameters are: c/d ratio, modified visual field parameters (MD, PSD), ganglion cell layer thickness. Forward-propagation neural networks (multilayer perceptron) were constructed with a layer of hidden neurons. The constructed neural models generated the output values for these data. The obtained results were then compared with the experimental values. Results: The best results were obtained during the training stage with the ANN network (21:35:4). If we consider a 25% confidence interval, we find that very good results are obtained during the validation stage, except for the average GCL thickness, for which the errors are slightly higher. Conclusions: Excellent results were obtained during the validation stage, which support the results obtained in other studies in the literature that strengthen the connection between sleep apnea syndrome and glaucoma changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的粉丝团团长应助jjh采纳,获得10
1秒前
Meyako完成签到 ,获得积分0
1秒前
VvvVv发布了新的文献求助10
1秒前
顺心书琴发布了新的文献求助10
2秒前
大模型应助Snoopy采纳,获得10
2秒前
默默白开水完成签到 ,获得积分10
4秒前
矿泉水发布了新的文献求助10
4秒前
5秒前
朱信姿发布了新的文献求助10
5秒前
暴躁的沛柔完成签到,获得积分10
5秒前
yoyo发布了新的文献求助10
6秒前
Joyce完成签到,获得积分10
6秒前
liangmh完成签到,获得积分10
6秒前
7秒前
alxat完成签到,获得积分20
7秒前
林朝阳完成签到,获得积分10
8秒前
8秒前
8秒前
壮观的珊珊完成签到,获得积分10
8秒前
朴素傲松完成签到,获得积分10
8秒前
bai完成签到,获得积分10
9秒前
9秒前
9秒前
科研小辣鸡完成签到,获得积分10
10秒前
JUll完成签到,获得积分10
11秒前
乐乐应助Dr.Sun采纳,获得10
11秒前
BK2008发布了新的文献求助10
11秒前
璐璐姐完成签到,获得积分10
11秒前
科研通AI6应助qi采纳,获得10
12秒前
执着的以筠完成签到 ,获得积分10
12秒前
zz发布了新的文献求助10
12秒前
cmu1h发布了新的文献求助10
12秒前
凉城予梦发布了新的文献求助10
13秒前
orixero应助Liu1YT采纳,获得10
13秒前
jjh发布了新的文献求助10
14秒前
14秒前
大大的西瓜完成签到 ,获得积分10
15秒前
15秒前
vec完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258445
求助须知:如何正确求助?哪些是违规求助? 4420393
关于积分的说明 13760182
捐赠科研通 4293953
什么是DOI,文献DOI怎么找? 2356224
邀请新用户注册赠送积分活动 1352546
关于科研通互助平台的介绍 1313340