Use of Artificial Neural Networks to Predict the Progression of Glaucoma in Patients with Sleep Apnea

青光眼 医学 人工神经网络 多层感知器 睡眠呼吸暂停 眼压 呼吸暂停 机器学习 心脏病学 人工智能 内科学 眼科 计算机科学
作者
Nicoleta Anton,Catălin Lisa,Bogdan Doroftei,Silvia Curteanu,Camelia Margareta Bogdănici,D Chiseliţă,Daniel Brănişteanu,Ionela Nechita-Dumitriu,Ovidiu-Dumitru Ilie,Roxana Elena Ciuntu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 6061-6061 被引量:6
标识
DOI:10.3390/app12126061
摘要

Aim: To construct neural models to predict the progression of glaucoma in patients with sleep apnea. Materials and Methods: Modeling the use of neural networks was performed using the Neurosolutions commercial simulator. The built databases gather information on a group of patients with primitive open-angle glaucoma and normal-tension glaucoma, who have been associated with sleep apnea syndrome and various stages of disease severity. The data within the database were divided as follows: 65 were used in the neural network training stage and 8 were kept for the validation stage. In total, 21 parameters were selected as input parameters for neural models including: age of patients, BMI (body mass index), systolic and diastolic blood pressure, intraocular pressure, central corneal thickness, corneal biomechanical parameters (IOPcc, HC, CRF), AHI, desaturation index, nocturnal oxygen saturation, remaining AHI, type of apnea, and associated general conditions (diabetes, hypertension, obesity, COPD). The selected output parameters are: c/d ratio, modified visual field parameters (MD, PSD), ganglion cell layer thickness. Forward-propagation neural networks (multilayer perceptron) were constructed with a layer of hidden neurons. The constructed neural models generated the output values for these data. The obtained results were then compared with the experimental values. Results: The best results were obtained during the training stage with the ANN network (21:35:4). If we consider a 25% confidence interval, we find that very good results are obtained during the validation stage, except for the average GCL thickness, for which the errors are slightly higher. Conclusions: Excellent results were obtained during the validation stage, which support the results obtained in other studies in the literature that strengthen the connection between sleep apnea syndrome and glaucoma changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaka091完成签到,获得积分10
刚刚
Yue完成签到,获得积分10
刚刚
Lxt完成签到,获得积分10
1秒前
1秒前
orixero应助LIANG采纳,获得10
2秒前
酷炫青烟发布了新的文献求助10
2秒前
上官若男应助Jenaloe采纳,获得10
2秒前
Singularity应助郭丰采纳,获得10
2秒前
2秒前
从若应助给我一块钱采纳,获得10
2秒前
桐桐应助Ubuntu采纳,获得10
3秒前
3秒前
菲菲发布了新的文献求助10
3秒前
3秒前
3秒前
任性的眼睛完成签到,获得积分10
3秒前
pluto应助红蜻蜓采纳,获得10
4秒前
4秒前
zhaxiao发布了新的文献求助50
4秒前
5秒前
renxy应助AhhHuang采纳,获得10
5秒前
tochege发布了新的文献求助10
5秒前
Rose完成签到,获得积分20
5秒前
彪yu发布了新的文献求助10
5秒前
6秒前
yar应助yKkkkkk采纳,获得10
6秒前
星辰大海应助研友_VZG64n采纳,获得10
6秒前
杭紫雪发布了新的文献求助10
6秒前
xz完成签到 ,获得积分10
6秒前
6秒前
domingo完成签到,获得积分10
7秒前
8秒前
unite 小丘发布了新的文献求助10
8秒前
8秒前
羰醛完成签到 ,获得积分10
8秒前
Akim应助洁净的尔冬采纳,获得10
8秒前
杀死比尔发布了新的文献求助10
9秒前
李爱国应助衡阳采纳,获得10
9秒前
搜集达人应助Frankyu采纳,获得30
9秒前
大力山槐完成签到,获得积分10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130