Use of Artificial Neural Networks to Predict the Progression of Glaucoma in Patients with Sleep Apnea

青光眼 医学 人工神经网络 多层感知器 睡眠呼吸暂停 眼压 呼吸暂停 机器学习 心脏病学 人工智能 内科学 眼科 计算机科学
作者
Nicoleta Anton,Catălin Lisa,Bogdan Doroftei,Silvia Curteanu,Camelia Margareta Bogdănici,D Chiseliţă,Daniel Brănişteanu,Ionela Nechita-Dumitriu,Ovidiu-Dumitru Ilie,Roxana Elena Ciuntu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 6061-6061 被引量:6
标识
DOI:10.3390/app12126061
摘要

Aim: To construct neural models to predict the progression of glaucoma in patients with sleep apnea. Materials and Methods: Modeling the use of neural networks was performed using the Neurosolutions commercial simulator. The built databases gather information on a group of patients with primitive open-angle glaucoma and normal-tension glaucoma, who have been associated with sleep apnea syndrome and various stages of disease severity. The data within the database were divided as follows: 65 were used in the neural network training stage and 8 were kept for the validation stage. In total, 21 parameters were selected as input parameters for neural models including: age of patients, BMI (body mass index), systolic and diastolic blood pressure, intraocular pressure, central corneal thickness, corneal biomechanical parameters (IOPcc, HC, CRF), AHI, desaturation index, nocturnal oxygen saturation, remaining AHI, type of apnea, and associated general conditions (diabetes, hypertension, obesity, COPD). The selected output parameters are: c/d ratio, modified visual field parameters (MD, PSD), ganglion cell layer thickness. Forward-propagation neural networks (multilayer perceptron) were constructed with a layer of hidden neurons. The constructed neural models generated the output values for these data. The obtained results were then compared with the experimental values. Results: The best results were obtained during the training stage with the ANN network (21:35:4). If we consider a 25% confidence interval, we find that very good results are obtained during the validation stage, except for the average GCL thickness, for which the errors are slightly higher. Conclusions: Excellent results were obtained during the validation stage, which support the results obtained in other studies in the literature that strengthen the connection between sleep apnea syndrome and glaucoma changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静初彤完成签到,获得积分10
1秒前
迷人的天抒应助荔枝吖采纳,获得10
3秒前
YuLu完成签到 ,获得积分10
9秒前
研友_Z1eDgZ完成签到,获得积分10
15秒前
BING完成签到 ,获得积分10
16秒前
嘻嘻完成签到 ,获得积分10
17秒前
科研通AI2S应助U9A采纳,获得10
18秒前
丁玲玲完成签到 ,获得积分10
22秒前
24秒前
zombleq完成签到 ,获得积分10
25秒前
牛马完成签到,获得积分10
25秒前
萧萧发布了新的文献求助30
30秒前
37秒前
c123完成签到 ,获得积分10
37秒前
文与武完成签到 ,获得积分10
39秒前
39秒前
1993963发布了新的文献求助10
43秒前
kk2024应助科研通管家采纳,获得20
46秒前
Ava应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
喝酸奶不舔盖完成签到 ,获得积分10
54秒前
热心的飞风完成签到 ,获得积分10
1分钟前
海英完成签到,获得积分10
1分钟前
bellapp完成签到 ,获得积分10
1分钟前
顺顺利利毕业完成签到 ,获得积分10
1分钟前
虚拟的水之完成签到 ,获得积分10
1分钟前
科研通AI2S应助U9A采纳,获得10
1分钟前
丘比特应助晨许沫光采纳,获得10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
flyingpig完成签到,获得积分10
1分钟前
秋纳瑞完成签到 ,获得积分10
1分钟前
master-f完成签到 ,获得积分10
1分钟前
1分钟前
挪威的森林完成签到,获得积分10
1分钟前
隐形的非笑完成签到 ,获得积分10
1分钟前
科研通AI5应助大力听芹采纳,获得10
1分钟前
悠雯完成签到 ,获得积分10
1分钟前
传奇3应助Emily采纳,获得10
1分钟前
三脸茫然完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167368
捐赠科研通 3248732
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664