Use of Artificial Neural Networks to Predict the Progression of Glaucoma in Patients with Sleep Apnea

青光眼 医学 人工神经网络 多层感知器 睡眠呼吸暂停 眼压 呼吸暂停 机器学习 心脏病学 人工智能 内科学 眼科 计算机科学
作者
Nicoleta Anton,Catălin Lisa,Bogdan Doroftei,Silvia Curteanu,Camelia Margareta Bogdănici,D Chiseliţă,Daniel Brănişteanu,Ionela Nechita-Dumitriu,Ovidiu-Dumitru Ilie,Roxana Elena Ciuntu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 6061-6061 被引量:6
标识
DOI:10.3390/app12126061
摘要

Aim: To construct neural models to predict the progression of glaucoma in patients with sleep apnea. Materials and Methods: Modeling the use of neural networks was performed using the Neurosolutions commercial simulator. The built databases gather information on a group of patients with primitive open-angle glaucoma and normal-tension glaucoma, who have been associated with sleep apnea syndrome and various stages of disease severity. The data within the database were divided as follows: 65 were used in the neural network training stage and 8 were kept for the validation stage. In total, 21 parameters were selected as input parameters for neural models including: age of patients, BMI (body mass index), systolic and diastolic blood pressure, intraocular pressure, central corneal thickness, corneal biomechanical parameters (IOPcc, HC, CRF), AHI, desaturation index, nocturnal oxygen saturation, remaining AHI, type of apnea, and associated general conditions (diabetes, hypertension, obesity, COPD). The selected output parameters are: c/d ratio, modified visual field parameters (MD, PSD), ganglion cell layer thickness. Forward-propagation neural networks (multilayer perceptron) were constructed with a layer of hidden neurons. The constructed neural models generated the output values for these data. The obtained results were then compared with the experimental values. Results: The best results were obtained during the training stage with the ANN network (21:35:4). If we consider a 25% confidence interval, we find that very good results are obtained during the validation stage, except for the average GCL thickness, for which the errors are slightly higher. Conclusions: Excellent results were obtained during the validation stage, which support the results obtained in other studies in the literature that strengthen the connection between sleep apnea syndrome and glaucoma changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色半烟完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
4秒前
Ning完成签到,获得积分10
7秒前
图图完成签到,获得积分10
7秒前
勤奋的灯完成签到 ,获得积分10
7秒前
ludong_0完成签到,获得积分10
7秒前
Asumita完成签到,获得积分10
8秒前
双青豆完成签到 ,获得积分10
8秒前
10秒前
fxy完成签到 ,获得积分10
11秒前
合适的幻然完成签到,获得积分10
11秒前
沐雨汐完成签到,获得积分10
13秒前
15秒前
16秒前
jiayoujijin完成签到 ,获得积分10
16秒前
淡然思卉完成签到,获得积分10
17秒前
争当科研巨匠完成签到,获得积分10
17秒前
英姑应助认真的刺猬采纳,获得10
24秒前
好大一只小坏蛋完成签到,获得积分20
24秒前
站走跑完成签到 ,获得积分10
27秒前
步步高完成签到,获得积分10
29秒前
无私的雪瑶完成签到 ,获得积分10
29秒前
小杨完成签到,获得积分20
30秒前
小花完成签到 ,获得积分10
35秒前
宁夕完成签到 ,获得积分10
39秒前
西宁完成签到,获得积分10
39秒前
拼搏的羊青完成签到 ,获得积分10
40秒前
科目三应助asd113采纳,获得10
40秒前
deng203完成签到 ,获得积分20
42秒前
43秒前
时米米米完成签到,获得积分10
43秒前
浅浅完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
52秒前
帅气的藏鸟完成签到,获得积分10
56秒前
加油完成签到 ,获得积分10
57秒前
健康的宛菡完成签到 ,获得积分10
58秒前
橙果果发布了新的文献求助20
58秒前
晚晚完成签到,获得积分10
59秒前
59秒前
听闻韬声依旧完成签到 ,获得积分10
59秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022