The design and preparation of dual Z-scheme photocatalytic system with stable and powerful redox ability, has became an effective strategy to solve the environmental pollution and energy crisis in recent years. Based on the advantages of dual Z-scheme photocatalysts such as fast charge carrier separation and transfer rate, wide range of light response, etc., significant progress has been made in recent years. In this review, the charge carrier transfer paths and construction principles of dual Z-scheme photocatalysts are focused on, the formation process of dual Z-scheme photocatalysts and their mechanism of action in the photocatalytic process are elucidated at the molecular level. Traditional characterization techniques and theoretical calculation methods are introduced to distinguish electron transfer paths. The applications of dual Z-scheme photocatalysts in the degradation of organic pollutants, conversion of inorganic pollutants, water splitting, and CO2 conversion are summarized. Finally, dual Z-scheme photocatalysts’ challenges and application prospects of as a new material are presented.