A computer vision algorithm for interpreting lacustrine carbonate textures at Searles Valley, USA

凝灰岩 地质学 多雨的 碳酸盐 自然地理学 古生物学
作者
Michaela Fendrock,Christine Y. Chen,Kristian J. Olson,Tim K. Lowenstein,David McGee
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:166: 105142-105142
标识
DOI:10.1016/j.cageo.2022.105142
摘要

Investigations of the paleohydrologies of pluvial lake systems have often employed lake carbonate deposits called “tufa” that grow subaqueously and can be preserved long after the drying of the lake. For this reason, tufa have been used as a proxy for minimum lake level. However, they exhibit a variety of textures that hold the potential to reveal richer paleoclimatological information. With the goal of determining if tufa texture can be used as a proxy for lake environment, this study investigates the textures of tufa at Mono Lake, California in comparison to the fossil tufa in Searles Valley, California. While observations in the last century suggest that the tufa in the Mono basin grew in waters similar to the modern, the tufa at Searles formed during the last glacial period, when the Great Basin contained a system of pluvial lakes on the scale of the modern Great Lakes. The tufa at both basins have been observed to have a range of classifiable textures, and new methods of inspecting visual data could be informative about what factors control these textures. To this end, a t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm is used to project images of the tufa at Searles and Mono into a coordinate space, allowing for simple, quantitative comparisons of the visual similarity of textures. The textures of tufa at Searles are compared to each other, as well as to the tufa at Mono. This study performs a robust assessment of the feasibility of Mono Lake as a modern analogue for Searles Valley. It finds that there is a justifiable basis for the comparison of certain fossil facies at Searles to the tufa at Mono, significant progress towards the goal of using texture as a metric for the environment in which tufa formed. • Computer vision is used to compare facies of tufa at Searles and Mono Lakes, California, USA. • According to this comparison, the tufa at Mono Lake are most visually similar to the “columnar” facies at Searles. • This is significant progress towards the goal of using tufa texture as a metric for tufa formation environment. • Studies of this kind could be used in future to distinguish between geologic facies including, but not limited to, tufa in other basins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yo一天发布了新的文献求助10
刚刚
半夏发布了新的文献求助150
刚刚
Shamsallah发布了新的文献求助10
1秒前
Harry发布了新的文献求助10
3秒前
llll发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
萝卜完成签到,获得积分10
4秒前
嘻嘻发布了新的文献求助10
4秒前
科研通AI6应助一颗小可可采纳,获得10
4秒前
阿良完成签到 ,获得积分10
4秒前
hqyh5016完成签到,获得积分10
5秒前
能zi完成签到 ,获得积分10
6秒前
浮游应助九三采纳,获得10
6秒前
6秒前
legend发布了新的文献求助10
7秒前
7秒前
7秒前
英姑应助Shamsallah采纳,获得10
7秒前
朱依敏完成签到,获得积分10
8秒前
明理香烟发布了新的文献求助10
9秒前
s_yu完成签到,获得积分10
9秒前
666发布了新的文献求助10
9秒前
李爱国应助Lars汉堡采纳,获得10
11秒前
MGN发布了新的文献求助10
11秒前
烟花应助欢喜的跳跳糖采纳,获得10
11秒前
小余同学完成签到 ,获得积分10
12秒前
12秒前
科研通AI6应助你再说一遍采纳,获得10
12秒前
嘻嘻完成签到,获得积分10
13秒前
Harry完成签到,获得积分10
14秒前
共享精神应助LeeNee采纳,获得10
14秒前
ghost发布了新的文献求助10
15秒前
归零儿完成签到,获得积分10
15秒前
15秒前
李健应助静柏采纳,获得10
16秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195434
求助须知:如何正确求助?哪些是违规求助? 4377466
关于积分的说明 13632489
捐赠科研通 4232737
什么是DOI,文献DOI怎么找? 2321831
邀请新用户注册赠送积分活动 1319981
关于科研通互助平台的介绍 1270412