静息状态功能磁共振成像
默认模式网络
脑电图
神经科学
额内侧回
额上回
心理学
听力学
任务正网络
顶叶上小叶
认知
医学
作者
G. Caravaglios,Emma Gabriella Muscoso,Valeria Blandino,Giulia Di Maria,Massimo Gangitano,Francesca Graziano,Fabrizio Guajana,Tommaso Piccoli
标识
DOI:10.1177/15500594221110036
摘要
Background. Alzheimer's cognitive-behavioral syndrome is the result of impaired connectivity between nerve cells, due to misfolded proteins, which accumulate and disrupt specific brain networks. Electroencephalography, because of its excellent temporal resolution, is an optimal approach for assessing the communication between functionally related brain regions. Objective. To detect and compare EEG resting-state networks (RSNs) in patients with amnesic mild cognitive impairment (aMCI), and healthy elderly (HE). Methods. We recruited 125 aMCI patients and 70 healthy elderly subjects. One hundred and twenty seconds of artifact-free EEG data were selected and compared between patients with aMCI and HE. We applied standard low-resolution brain electromagnetic tomography (sLORETA)-independent component analysis (ICA) to assess resting-state networks. Each network consisted of a set of images, one for each frequency (delta, theta, alpha1/2, beta1/2). Results. The functional ICA analysis revealed 17 networks common to groups. The statistical procedure demonstrated that aMCI used some networks differently than HE. The most relevant findings were as follows. Amnesic-MCI had: i) increased delta/beta activity in the superior frontal gyrus and decreased alpha1 activity in the paracentral lobule (ie, default mode network); ii) greater delta/theta/alpha/beta in the superior frontal gyrus (i.e, attention network); iii) lower alpha in the left superior parietal lobe, as well as a lower delta/theta and beta, respectively in post-central, and in superior frontal gyrus(ie, attention network). Conclusions. Our study confirms sLORETA-ICA method is effective in detecting functional resting-state networks, as well as between-groups connectivity differences. The findings provide support to the Alzheimer's network disconnection hypothesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI