Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model

弯月面 磁共振成像 卷积神经网络 深度学习 人工智能 医学 眼泪 诊断准确性 鉴定(生物学) 计算机科学 放射科 外科 数学 植物 几何学 入射(几何) 生物
作者
Jie Li,Kun Qian,Jinyong Liu,Zhijun Huang,Yuchen Zhang,Guoqian Zhao,Huifen Wang,Meng Li,Xiaohan Liang,Fang Zhou,Xiuying Yu,Lan Li,Xingsong Wang,Xianfeng Yang,Qing Jiang
出处
期刊:Journal of orthopaedic translation [Elsevier]
卷期号:34: 91-101 被引量:17
标识
DOI:10.1016/j.jot.2022.05.006
摘要

Meniscus tear is a common problem in sports trauma, and its imaging diagnosis mainly relies on MRI. To improve the diagnostic accuracy and efficiency, a deep learning model was employed in this study and the identification efficiency was evaluated.Standard knee MRI images from 924 individual patients were used to complete the training, validation and testing processes. Mask regional convolutional neural network (R-CNN) was used to build the deep learning network structure, and ResNet50 was adopted to develop the backbone network. The deep learning model was trained and validated with a dataset containing 504 and 220 patients, respectively. Internal testing was performed based on a dataset of 200 patients, and 180 patients from 8 hospitals were regarded as an external dataset for model validation. Additionally, 40 patients who were diagnosed by the arthroscopic surgery were enrolled as the final test dataset.After training and validation, the deep learning model effectively recognized healthy and injured menisci. Average precision for the three types of menisci (healthy, torn and degenerated menisci) ranged from 68% to 80%. Diagnostic accuracy for healthy, torn and degenerated menisci was 87.50%, 86.96%, and 84.78%, respectively. Validation results from external dataset demonstrated that the accuracy of diagnosing torn and intact meniscus tear through 3.0T MRI images was higher than 80%, while the accuracy verified by arthroscopic surgery was 87.50%.Mask R-CNN effectively identified and diagnosed meniscal injuries, especially for tears that occurred in different parts of the meniscus. The recognition ability was admirable, and the diagnostic accuracy could be further improved with increased training sample size. Therefore, this deep learning model showed great potential in diagnosing meniscus injuries.Deep learning model exerted unique effect in terms of reducing doctors' workload and improving diagnostic accuracy. Injured and healthy menisci could be more accurately identified and classified based on training and learning datasets. This model could also distinguish torn from degenerated menisci, making it an effective tool for MRI-assisted diagnosis of meniscus injuries in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助刘唐荣采纳,获得10
刚刚
2秒前
夜话风陵杜完成签到 ,获得积分0
2秒前
机械魔尺完成签到 ,获得积分10
3秒前
7Steven7完成签到 ,获得积分10
4秒前
小马甲应助zxj采纳,获得10
6秒前
6秒前
甜想发布了新的文献求助10
6秒前
6秒前
和谐的问丝完成签到,获得积分10
7秒前
miracle发布了新的文献求助10
7秒前
单纯的手机完成签到,获得积分10
7秒前
万能图书馆应助岩追研采纳,获得10
8秒前
DamenS完成签到,获得积分10
8秒前
8秒前
窝趣嘞完成签到 ,获得积分10
9秒前
jinnibaby完成签到,获得积分10
10秒前
10秒前
等等完成签到,获得积分20
11秒前
琥斛完成签到 ,获得积分10
13秒前
大雪发布了新的文献求助10
13秒前
刘唐荣完成签到,获得积分10
13秒前
光亮向雁完成签到 ,获得积分10
13秒前
哭泣的猕猴桃完成签到,获得积分10
15秒前
15秒前
18秒前
19秒前
Trista完成签到,获得积分10
19秒前
20秒前
20秒前
研究生完成签到 ,获得积分10
21秒前
火星上的闭月完成签到 ,获得积分10
21秒前
5114完成签到,获得积分10
21秒前
超级白昼发布了新的文献求助30
21秒前
hzuii发布了新的文献求助10
22秒前
22秒前
Laniakea完成签到,获得积分10
22秒前
欢喜的火龙果完成签到 ,获得积分10
22秒前
23秒前
成就的笑南完成签到 ,获得积分10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162682
求助须知:如何正确求助?哪些是违规求助? 2813599
关于积分的说明 7901187
捐赠科研通 2473168
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175