Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model

弯月面 磁共振成像 卷积神经网络 深度学习 人工智能 医学 眼泪 诊断准确性 鉴定(生物学) 计算机科学 放射科 外科 数学 生物 入射(几何) 植物 几何学
作者
Jie Li,Kun Qian,Jinyong Liu,Zhijun Huang,Yuchen Zhang,Guoqian Zhao,Huifen Wang,Meng Li,Xiaohan Liang,Fang Zhou,Xiuying Yu,Lan Li,Xingsong Wang,Xianfeng Yang,Qing Jiang
出处
期刊:Journal of orthopaedic translation [Elsevier BV]
卷期号:34: 91-101 被引量:27
标识
DOI:10.1016/j.jot.2022.05.006
摘要

Meniscus tear is a common problem in sports trauma, and its imaging diagnosis mainly relies on MRI. To improve the diagnostic accuracy and efficiency, a deep learning model was employed in this study and the identification efficiency was evaluated.Standard knee MRI images from 924 individual patients were used to complete the training, validation and testing processes. Mask regional convolutional neural network (R-CNN) was used to build the deep learning network structure, and ResNet50 was adopted to develop the backbone network. The deep learning model was trained and validated with a dataset containing 504 and 220 patients, respectively. Internal testing was performed based on a dataset of 200 patients, and 180 patients from 8 hospitals were regarded as an external dataset for model validation. Additionally, 40 patients who were diagnosed by the arthroscopic surgery were enrolled as the final test dataset.After training and validation, the deep learning model effectively recognized healthy and injured menisci. Average precision for the three types of menisci (healthy, torn and degenerated menisci) ranged from 68% to 80%. Diagnostic accuracy for healthy, torn and degenerated menisci was 87.50%, 86.96%, and 84.78%, respectively. Validation results from external dataset demonstrated that the accuracy of diagnosing torn and intact meniscus tear through 3.0T MRI images was higher than 80%, while the accuracy verified by arthroscopic surgery was 87.50%.Mask R-CNN effectively identified and diagnosed meniscal injuries, especially for tears that occurred in different parts of the meniscus. The recognition ability was admirable, and the diagnostic accuracy could be further improved with increased training sample size. Therefore, this deep learning model showed great potential in diagnosing meniscus injuries.Deep learning model exerted unique effect in terms of reducing doctors' workload and improving diagnostic accuracy. Injured and healthy menisci could be more accurately identified and classified based on training and learning datasets. This model could also distinguish torn from degenerated menisci, making it an effective tool for MRI-assisted diagnosis of meniscus injuries in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚强西牛发布了新的文献求助10
1秒前
FashionBoy应助da1234采纳,获得10
1秒前
2秒前
zxmine发布了新的文献求助10
2秒前
彭于晏应助直到星星打烊采纳,获得10
3秒前
猫小乐C完成签到,获得积分10
4秒前
5秒前
ty发布了新的文献求助10
5秒前
天天快乐应助liying采纳,获得10
5秒前
QQ发布了新的文献求助10
5秒前
SciGPT应助学习中勿扰采纳,获得10
5秒前
朱建军应助178181采纳,获得10
6秒前
FashionBoy应助满天星采纳,获得10
6秒前
6秒前
6秒前
Oqq发布了新的文献求助10
7秒前
醉熏的含羞草完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
10秒前
想放春假发布了新的文献求助20
10秒前
12秒前
完美世界应助舒适的尔容采纳,获得10
12秒前
13秒前
13秒前
顾北发布了新的文献求助10
14秒前
丘比特应助zhou国兵采纳,获得10
14秒前
14秒前
会笑的光完成签到,获得积分10
14秒前
15秒前
15秒前
Wei发布了新的文献求助10
16秒前
1234发布了新的文献求助10
16秒前
思维隋发布了新的文献求助10
17秒前
眯眯眼的朋友完成签到,获得积分20
17秒前
徐逊发布了新的文献求助10
17秒前
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113