A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study

人工智能 分割 卷积神经网络 Sørensen–骰子系数 间质细胞 计算机科学 放大倍数 上皮 病理 模式识别(心理学) 图像分割 医学
作者
Yuxin Wu,Can Koyuncu,Paula Toro,Germán Corredor,Qianyu Feng,Christina Buzzy,Matthew Old,Theodoros N. Teknos,Stephen Connelly,Richard C. Jordan,Krystle A. Lang Kuhs,Cheng Lu,James S. Lewis,Anant Madabhushi
出处
期刊:Oral Oncology [Elsevier]
卷期号:131: 105942-105942 被引量:7
标识
DOI:10.1016/j.oraloncology.2022.105942
摘要

Tissue slides from Oral cavity squamous cell carcinoma (OC-SCC), particularly the epithelial regions, hold morphologic features that are both diagnostic and prognostic. Yet, previously developed approaches for automated epithelium segmentation in OC-SCC have not been independently tested in a multi-center setting. In this study, we aimed to investigate the effectiveness and applicability of a convolutional neural network (CNN) model to perform epithelial segmentation using digitized H&E-stained diagnostic slides from OC-SCC patients in a multi-center setting. A CNN model was developed to segment the epithelial regions of digitized slides (n = 810), retrospectively collected from five different centers. Deep learning models were trained and validated using well-annotated tissue microarray (TMA) images (n = 212) at various magnifications. The best performing model was locked down and used for independent testing with a total of 478 whole-slide images (WSIs). Manually annotated epithelial regions were used as the reference standard for evaluation. We also compared the model generated results with IHC-stained epithelium (n = 120) as the reference. The locked-down CNN model trained on the TMA image training cohorts with 10x magnification achieved the best segmentation performance. The locked-down model performed consistently and yielded Pixel Accuracy, Recall Rate, Precision Rate, and Dice Coefficient that ranged from 95.8% to 96.6%, 79.1% to 93.8%, 85.7% to 89.3%, and 82.3% to 89.0%, respectively for the three independent testing WSI cohorts. The automated model achieved a consistently accurate performance for automated epithelial region segmentation compared to manual annotations. This model could be integrated into a computer-aided diagnosis or prognosis system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒球完成签到 ,获得积分10
刚刚
mmmewo完成签到,获得积分10
1秒前
春儿完成签到,获得积分10
1秒前
彭于晏应助lhy采纳,获得10
1秒前
小C完成签到,获得积分10
1秒前
坚强枫完成签到,获得积分10
1秒前
不想看文献完成签到 ,获得积分10
2秒前
gent完成签到,获得积分10
2秒前
义气飞机完成签到,获得积分10
2秒前
默11完成签到 ,获得积分10
2秒前
casey完成签到,获得积分10
2秒前
3秒前
积极钧发布了新的文献求助10
3秒前
流水完成签到,获得积分10
3秒前
拼搏的飞莲完成签到 ,获得积分10
3秒前
微笑向卉完成签到,获得积分10
4秒前
云璃完成签到 ,获得积分10
4秒前
pp完成签到,获得积分10
4秒前
5秒前
廖紊完成签到,获得积分10
5秒前
wangbw完成签到,获得积分10
6秒前
6秒前
6秒前
刘大白完成签到,获得积分10
6秒前
堀江真夏完成签到 ,获得积分10
7秒前
karyoter完成签到,获得积分10
7秒前
ellieou完成签到,获得积分10
7秒前
拾光发布了新的文献求助10
8秒前
漠池完成签到,获得积分10
8秒前
传奇3应助愉快的烤鸡采纳,获得10
9秒前
Star完成签到,获得积分10
9秒前
浅梦完成签到,获得积分10
10秒前
方一发布了新的文献求助10
10秒前
生动白安完成签到,获得积分10
10秒前
gaojing完成签到,获得积分10
10秒前
Choi发布了新的文献求助10
10秒前
11秒前
等风来完成签到 ,获得积分10
11秒前
Wenna发布了新的文献求助10
11秒前
小鱼完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568370
求助须知:如何正确求助?哪些是违规求助? 4652947
关于积分的说明 14702495
捐赠科研通 4594744
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463734