A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study

人工智能 分割 卷积神经网络 Sørensen–骰子系数 间质细胞 计算机科学 放大倍数 上皮 病理 模式识别(心理学) 图像分割 医学
作者
Yuxin Wu,Can Koyuncu,Paula Toro,Germán Corredor,Qianyu Feng,Christina Buzzy,Matthew Old,Theodoros N. Teknos,Stephen Connelly,Richard C. Jordan,Krystle A. Lang Kuhs,Cheng Lu,James S. Lewis,Anant Madabhushi
出处
期刊:Oral Oncology [Elsevier]
卷期号:131: 105942-105942 被引量:7
标识
DOI:10.1016/j.oraloncology.2022.105942
摘要

Tissue slides from Oral cavity squamous cell carcinoma (OC-SCC), particularly the epithelial regions, hold morphologic features that are both diagnostic and prognostic. Yet, previously developed approaches for automated epithelium segmentation in OC-SCC have not been independently tested in a multi-center setting. In this study, we aimed to investigate the effectiveness and applicability of a convolutional neural network (CNN) model to perform epithelial segmentation using digitized H&E-stained diagnostic slides from OC-SCC patients in a multi-center setting. A CNN model was developed to segment the epithelial regions of digitized slides (n = 810), retrospectively collected from five different centers. Deep learning models were trained and validated using well-annotated tissue microarray (TMA) images (n = 212) at various magnifications. The best performing model was locked down and used for independent testing with a total of 478 whole-slide images (WSIs). Manually annotated epithelial regions were used as the reference standard for evaluation. We also compared the model generated results with IHC-stained epithelium (n = 120) as the reference. The locked-down CNN model trained on the TMA image training cohorts with 10x magnification achieved the best segmentation performance. The locked-down model performed consistently and yielded Pixel Accuracy, Recall Rate, Precision Rate, and Dice Coefficient that ranged from 95.8% to 96.6%, 79.1% to 93.8%, 85.7% to 89.3%, and 82.3% to 89.0%, respectively for the three independent testing WSI cohorts. The automated model achieved a consistently accurate performance for automated epithelial region segmentation compared to manual annotations. This model could be integrated into a computer-aided diagnosis or prognosis system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腼腆的忆安完成签到,获得积分10
1秒前
丘比特应助niniyiya采纳,获得10
2秒前
3秒前
3秒前
3秒前
yy关注了科研通微信公众号
4秒前
5秒前
鲤鱼一鸣完成签到,获得积分10
7秒前
7秒前
万能图书馆应助wangjie采纳,获得10
7秒前
快乐的睫毛完成签到 ,获得积分10
8秒前
SciGPT应助Three采纳,获得10
9秒前
海茵完成签到,获得积分10
9秒前
学术羊发布了新的文献求助10
10秒前
上官若男应助hurb采纳,获得10
10秒前
怪怪发布了新的文献求助10
11秒前
xyx发布了新的文献求助10
11秒前
bobo发布了新的文献求助10
11秒前
13秒前
14秒前
Tingting完成签到 ,获得积分10
14秒前
田哲完成签到 ,获得积分10
15秒前
稳重的宛丝完成签到 ,获得积分10
15秒前
15秒前
思源应助turtle_medchem采纳,获得10
16秒前
科研通AI2S应助小胡采纳,获得10
16秒前
17秒前
zwk发布了新的文献求助10
18秒前
wangjie完成签到,获得积分20
18秒前
18秒前
石头发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
bkagyin应助Zz采纳,获得10
21秒前
22秒前
22秒前
22秒前
nenoaowu发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393830
求助须知:如何正确求助?哪些是违规求助? 4515135
关于积分的说明 14052862
捐赠科研通 4426320
什么是DOI,文献DOI怎么找? 2431294
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505