已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study

人工智能 分割 卷积神经网络 Sørensen–骰子系数 间质细胞 计算机科学 放大倍数 上皮 病理 模式识别(心理学) 图像分割 医学
作者
Yuxin Wu,Can Koyuncu,Paula Toro,Germán Corredor,Qianyu Feng,Christina Buzzy,Matthew Old,Theodoros N. Teknos,Stephen Connelly,Richard C. Jordan,Krystle A. Lang Kuhs,Cheng Lu,James S. Lewis,Anant Madabhushi
出处
期刊:Oral Oncology [Elsevier]
卷期号:131: 105942-105942 被引量:7
标识
DOI:10.1016/j.oraloncology.2022.105942
摘要

Tissue slides from Oral cavity squamous cell carcinoma (OC-SCC), particularly the epithelial regions, hold morphologic features that are both diagnostic and prognostic. Yet, previously developed approaches for automated epithelium segmentation in OC-SCC have not been independently tested in a multi-center setting. In this study, we aimed to investigate the effectiveness and applicability of a convolutional neural network (CNN) model to perform epithelial segmentation using digitized H&E-stained diagnostic slides from OC-SCC patients in a multi-center setting. A CNN model was developed to segment the epithelial regions of digitized slides (n = 810), retrospectively collected from five different centers. Deep learning models were trained and validated using well-annotated tissue microarray (TMA) images (n = 212) at various magnifications. The best performing model was locked down and used for independent testing with a total of 478 whole-slide images (WSIs). Manually annotated epithelial regions were used as the reference standard for evaluation. We also compared the model generated results with IHC-stained epithelium (n = 120) as the reference. The locked-down CNN model trained on the TMA image training cohorts with 10x magnification achieved the best segmentation performance. The locked-down model performed consistently and yielded Pixel Accuracy, Recall Rate, Precision Rate, and Dice Coefficient that ranged from 95.8% to 96.6%, 79.1% to 93.8%, 85.7% to 89.3%, and 82.3% to 89.0%, respectively for the three independent testing WSI cohorts. The automated model achieved a consistently accurate performance for automated epithelial region segmentation compared to manual annotations. This model could be integrated into a computer-aided diagnosis or prognosis system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无尽夏完成签到 ,获得积分10
1秒前
1秒前
2秒前
小蘑菇应助mgl采纳,获得10
2秒前
2秒前
zyw发布了新的文献求助10
3秒前
打打应助zzzdx采纳,获得10
4秒前
哈哈哈发布了新的文献求助10
4秒前
kitty发布了新的文献求助10
6秒前
xiaofeiyan完成签到 ,获得积分10
7秒前
9秒前
Orange应助珷玞采纳,获得10
9秒前
蝴蝶飞出了潜水钟完成签到,获得积分10
10秒前
入变完成签到 ,获得积分10
11秒前
一丁雨发布了新的文献求助10
13秒前
13秒前
斯文败类应助kitty采纳,获得10
13秒前
暴躁的梦发布了新的文献求助10
13秒前
13秒前
15秒前
16秒前
Kaaaly关注了科研通微信公众号
16秒前
xiaoxiao发布了新的文献求助40
16秒前
slender完成签到,获得积分20
17秒前
猪猪侠发布了新的文献求助10
17秒前
allshestar完成签到 ,获得积分0
18秒前
19秒前
mgl发布了新的文献求助10
19秒前
Janny完成签到,获得积分10
19秒前
RC_Wang发布了新的文献求助10
21秒前
21秒前
ZNX完成签到,获得积分20
22秒前
羽化成环发布了新的文献求助10
22秒前
24秒前
子訡完成签到 ,获得积分10
24秒前
24秒前
从嘉发布了新的文献求助10
26秒前
科目三应助merci采纳,获得10
26秒前
mgl完成签到,获得积分10
26秒前
Hello应助桃子e采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810