亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study

人工智能 分割 卷积神经网络 Sørensen–骰子系数 间质细胞 计算机科学 放大倍数 上皮 病理 模式识别(心理学) 图像分割 医学
作者
Yuxin Wu,Can Koyuncu,Paula Toro,Germán Corredor,Qianyu Feng,Christina Buzzy,Matthew Old,Theodoros N. Teknos,Stephen Connelly,Richard C. Jordan,Krystle A. Lang Kuhs,Cheng Lu,James S. Lewis,Anant Madabhushi
出处
期刊:Oral Oncology [Elsevier]
卷期号:131: 105942-105942 被引量:7
标识
DOI:10.1016/j.oraloncology.2022.105942
摘要

Tissue slides from Oral cavity squamous cell carcinoma (OC-SCC), particularly the epithelial regions, hold morphologic features that are both diagnostic and prognostic. Yet, previously developed approaches for automated epithelium segmentation in OC-SCC have not been independently tested in a multi-center setting. In this study, we aimed to investigate the effectiveness and applicability of a convolutional neural network (CNN) model to perform epithelial segmentation using digitized H&E-stained diagnostic slides from OC-SCC patients in a multi-center setting. A CNN model was developed to segment the epithelial regions of digitized slides (n = 810), retrospectively collected from five different centers. Deep learning models were trained and validated using well-annotated tissue microarray (TMA) images (n = 212) at various magnifications. The best performing model was locked down and used for independent testing with a total of 478 whole-slide images (WSIs). Manually annotated epithelial regions were used as the reference standard for evaluation. We also compared the model generated results with IHC-stained epithelium (n = 120) as the reference. The locked-down CNN model trained on the TMA image training cohorts with 10x magnification achieved the best segmentation performance. The locked-down model performed consistently and yielded Pixel Accuracy, Recall Rate, Precision Rate, and Dice Coefficient that ranged from 95.8% to 96.6%, 79.1% to 93.8%, 85.7% to 89.3%, and 82.3% to 89.0%, respectively for the three independent testing WSI cohorts. The automated model achieved a consistently accurate performance for automated epithelial region segmentation compared to manual annotations. This model could be integrated into a computer-aided diagnosis or prognosis system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常念蕾关注了科研通微信公众号
3秒前
xiaozhang发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
13秒前
21秒前
23秒前
平常念蕾发布了新的文献求助10
25秒前
小二郎应助鲜艳的手链采纳,获得10
27秒前
callmekar发布了新的文献求助10
27秒前
侯海察完成签到,获得积分10
29秒前
lingyun4592发布了新的文献求助10
29秒前
33秒前
浮游应助callmekar采纳,获得10
35秒前
35秒前
39秒前
Ava应助lingyun4592采纳,获得10
39秒前
elliotzzz发布了新的文献求助10
40秒前
星辰大海应助现代的如霜采纳,获得10
59秒前
jikngsk发布了新的文献求助10
1分钟前
1分钟前
Raunio完成签到,获得积分10
1分钟前
franklin_fsz应助smile采纳,获得30
1分钟前
smile完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
mmyhn应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
烁果累累完成签到 ,获得积分10
2分钟前
木子完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助bzy采纳,获得10
2分钟前
万能图书馆应助ranan采纳,获得10
2分钟前
科目三应助Fletcherschwann采纳,获得10
2分钟前
2分钟前
田様应助酷酷的冬灵采纳,获得10
2分钟前
2分钟前
酒渡完成签到,获得积分10
2分钟前
2分钟前
冷风完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426408
求助须知:如何正确求助?哪些是违规求助? 4540188
关于积分的说明 14171785
捐赠科研通 4457921
什么是DOI,文献DOI怎么找? 2444736
邀请新用户注册赠送积分活动 1435738
关于科研通互助平台的介绍 1413211