A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study

人工智能 分割 卷积神经网络 Sørensen–骰子系数 间质细胞 计算机科学 放大倍数 上皮 病理 模式识别(心理学) 图像分割 医学
作者
Yuxin Wu,Can Koyuncu,Paula Toro,Germán Corredor,Qianyu Feng,Christina Buzzy,Matthew Old,Theodoros N. Teknos,Stephen Connelly,Richard C. Jordan,Krystle A. Lang Kuhs,Cheng Lu,James S. Lewis,Anant Madabhushi
出处
期刊:Oral Oncology [Elsevier]
卷期号:131: 105942-105942 被引量:7
标识
DOI:10.1016/j.oraloncology.2022.105942
摘要

Tissue slides from Oral cavity squamous cell carcinoma (OC-SCC), particularly the epithelial regions, hold morphologic features that are both diagnostic and prognostic. Yet, previously developed approaches for automated epithelium segmentation in OC-SCC have not been independently tested in a multi-center setting. In this study, we aimed to investigate the effectiveness and applicability of a convolutional neural network (CNN) model to perform epithelial segmentation using digitized H&E-stained diagnostic slides from OC-SCC patients in a multi-center setting. A CNN model was developed to segment the epithelial regions of digitized slides (n = 810), retrospectively collected from five different centers. Deep learning models were trained and validated using well-annotated tissue microarray (TMA) images (n = 212) at various magnifications. The best performing model was locked down and used for independent testing with a total of 478 whole-slide images (WSIs). Manually annotated epithelial regions were used as the reference standard for evaluation. We also compared the model generated results with IHC-stained epithelium (n = 120) as the reference. The locked-down CNN model trained on the TMA image training cohorts with 10x magnification achieved the best segmentation performance. The locked-down model performed consistently and yielded Pixel Accuracy, Recall Rate, Precision Rate, and Dice Coefficient that ranged from 95.8% to 96.6%, 79.1% to 93.8%, 85.7% to 89.3%, and 82.3% to 89.0%, respectively for the three independent testing WSI cohorts. The automated model achieved a consistently accurate performance for automated epithelial region segmentation compared to manual annotations. This model could be integrated into a computer-aided diagnosis or prognosis system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KSung完成签到 ,获得积分10
2秒前
希望天下0贩的0应助Oasis采纳,获得10
2秒前
圆圆发布了新的文献求助10
2秒前
彤快乐完成签到,获得积分10
4秒前
Peng发布了新的文献求助10
4秒前
Oasis完成签到,获得积分10
9秒前
大白完成签到 ,获得积分10
9秒前
Kidmuse完成签到,获得积分10
9秒前
昏睡的保温杯完成签到,获得积分10
10秒前
11秒前
12秒前
不安士晋完成签到,获得积分10
14秒前
秋意浓完成签到,获得积分10
15秒前
shuogesama完成签到,获得积分10
15秒前
dungaway发布了新的文献求助10
15秒前
16秒前
生而追梦不止完成签到 ,获得积分10
17秒前
17秒前
echo完成签到 ,获得积分10
18秒前
ladette发布了新的文献求助10
22秒前
Zard完成签到,获得积分10
22秒前
23秒前
老衲完成签到,获得积分0
24秒前
小白完成签到 ,获得积分10
27秒前
燕子完成签到,获得积分10
28秒前
爱笑发布了新的文献求助10
28秒前
重要的小刘完成签到,获得积分10
28秒前
雾潋完成签到,获得积分10
29秒前
Eternity完成签到,获得积分10
29秒前
瞬华完成签到 ,获得积分10
29秒前
溜了溜了完成签到,获得积分10
29秒前
111完成签到,获得积分10
30秒前
葫芦娃大铁锤完成签到 ,获得积分10
30秒前
复杂念梦完成签到 ,获得积分10
32秒前
bopbopbaby完成签到 ,获得积分10
33秒前
Binbin完成签到 ,获得积分10
33秒前
柒染完成签到 ,获得积分10
33秒前
bobochi完成签到 ,获得积分10
33秒前
万能图书馆应助ladette采纳,获得10
35秒前
flyfh完成签到 ,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788096
关于积分的说明 7784635
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011