A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study

人工智能 分割 卷积神经网络 Sørensen–骰子系数 间质细胞 计算机科学 放大倍数 上皮 病理 模式识别(心理学) 图像分割 医学
作者
Yuxin Wu,Can Koyuncu,Paula Toro,Germán Corredor,Qianyu Feng,Christina Buzzy,Matthew Old,Theodoros N. Teknos,Stephen Connelly,Richard C. Jordan,Krystle A. Lang Kuhs,Cheng Lu,James S. Lewis,Anant Madabhushi
出处
期刊:Oral Oncology [Elsevier]
卷期号:131: 105942-105942 被引量:7
标识
DOI:10.1016/j.oraloncology.2022.105942
摘要

Tissue slides from Oral cavity squamous cell carcinoma (OC-SCC), particularly the epithelial regions, hold morphologic features that are both diagnostic and prognostic. Yet, previously developed approaches for automated epithelium segmentation in OC-SCC have not been independently tested in a multi-center setting. In this study, we aimed to investigate the effectiveness and applicability of a convolutional neural network (CNN) model to perform epithelial segmentation using digitized H&E-stained diagnostic slides from OC-SCC patients in a multi-center setting. A CNN model was developed to segment the epithelial regions of digitized slides (n = 810), retrospectively collected from five different centers. Deep learning models were trained and validated using well-annotated tissue microarray (TMA) images (n = 212) at various magnifications. The best performing model was locked down and used for independent testing with a total of 478 whole-slide images (WSIs). Manually annotated epithelial regions were used as the reference standard for evaluation. We also compared the model generated results with IHC-stained epithelium (n = 120) as the reference. The locked-down CNN model trained on the TMA image training cohorts with 10x magnification achieved the best segmentation performance. The locked-down model performed consistently and yielded Pixel Accuracy, Recall Rate, Precision Rate, and Dice Coefficient that ranged from 95.8% to 96.6%, 79.1% to 93.8%, 85.7% to 89.3%, and 82.3% to 89.0%, respectively for the three independent testing WSI cohorts. The automated model achieved a consistently accurate performance for automated epithelial region segmentation compared to manual annotations. This model could be integrated into a computer-aided diagnosis or prognosis system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihe198900完成签到 ,获得积分10
刚刚
香蕉导师发布了新的文献求助10
刚刚
zzmm发布了新的文献求助10
1秒前
36456657应助小喜采纳,获得10
1秒前
爱笑凤凰完成签到,获得积分10
2秒前
2秒前
天气预报完成签到,获得积分10
3秒前
smottom应助热情的戾采纳,获得10
3秒前
ruru完成签到,获得积分10
3秒前
布布完成签到,获得积分10
3秒前
SciGPT应助Han采纳,获得10
3秒前
bkagyin应助二十二采纳,获得10
3秒前
Yu完成签到,获得积分10
3秒前
Elizabeth12138完成签到,获得积分10
4秒前
5秒前
vvA11发布了新的文献求助10
5秒前
脑洞疼应助suye采纳,获得10
5秒前
6秒前
6秒前
航航完成签到,获得积分20
7秒前
小蘑菇应助健忘捕采纳,获得10
7秒前
8秒前
8秒前
要减肥完成签到,获得积分10
8秒前
8秒前
和谐青柏应助popo采纳,获得10
8秒前
9秒前
牛奶糖完成签到,获得积分10
9秒前
悠悠发布了新的文献求助10
9秒前
Jasper应助Yu采纳,获得100
9秒前
9秒前
乐乐应助善良的血茗采纳,获得10
9秒前
niobelynn发布了新的文献求助10
10秒前
10秒前
极夜完成签到,获得积分10
10秒前
10秒前
10秒前
bullyr关注了科研通微信公众号
11秒前
脑洞疼应助昵称采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520