Radiologists with and without deep learning–based computer-aided diagnosis: comparison of performance and interobserver agreement for characterizing and diagnosing pulmonary nodules/masses

医学 恶性肿瘤 神经组阅片室 放射科 钙化 组内相关 介入放射学 核医学
作者
Tomohiro Wataya,Masahiro Yanagawa,Mitsuko Tsubamoto,Tomoharu Sato,Daiki Nishigaki,Kosuke Kita,Kazuki Yamagata,Yuki Suzuki,Akinori Hata,Shoji Kido,Noriyuki Tomiyama
出处
期刊:European Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s00330-022-08948-4
摘要

To compare the performance of radiologists in characterizing and diagnosing pulmonary nodules/masses with and without deep learning (DL)-based computer-aided diagnosis (CAD).We studied a total of 101 nodules/masses detected on CT performed between January and March 2018 at Osaka University Hospital (malignancy: 55 cases). SYNAPSE SAI Viewer V1.4 was used to analyze the nodules/masses. In total, 15 independent radiologists were grouped (n = 5 each) according to their experience: L (< 3 years), M (3-5 years), and H (> 5 years). The likelihoods of 15 characteristics, such as cavitation and calcification, and the diagnosis (malignancy) were evaluated by each radiologist with and without CAD, and the assessment time was recorded. The AUCs compared with the reference standard set by two board-certified chest radiologists were analyzed following the multi-reader multi-case method. Furthermore, interobserver agreement was compared using intraclass correlation coefficients (ICCs).The AUCs for ill-defined boundary, irregular margin, irregular shape, calcification, pleural contact, and malignancy in all 15 radiologists, irregular margin and irregular shape in L and ill-defined boundary and irregular margin in M improved significantly (p < 0.05); no significant improvements were found in H. L showed the greatest increase in the AUC for malignancy (not significant). The ICCs improved in all groups and for nearly all items. The median assessment time was not prolonged by CAD.DL-based CAD helps radiologists, particularly those with < 5 years of experience, to accurately characterize and diagnose pulmonary nodules/masses, and improves the reproducibility of findings among radiologists.• Deep learning-based computer-aided diagnosis improves the accuracy of characterizing nodules/masses and diagnosing malignancy, particularly by radiologists with < 5 years of experience. • Computer-aided diagnosis increases not only the accuracy but also the reproducibility of the findings across radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
5秒前
icel完成签到,获得积分10
5秒前
6秒前
务实的听筠完成签到,获得积分20
7秒前
cocolu给cocolu的求助进行了留言
8秒前
丘比特应助平常的路人采纳,获得10
8秒前
9秒前
ZZ发布了新的文献求助10
9秒前
11秒前
木瓜发布了新的文献求助10
11秒前
满眼星辰发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
15秒前
万能图书馆应助木瓜采纳,获得10
17秒前
123发布了新的文献求助10
17秒前
17秒前
18秒前
22秒前
充电宝应助123采纳,获得10
24秒前
24秒前
24秒前
yiyi发布了新的文献求助30
26秒前
丰那个丰发布了新的文献求助10
27秒前
27秒前
28秒前
1111完成签到,获得积分10
29秒前
积极香菜完成签到,获得积分10
29秒前
29秒前
小宋同学应助ZZZ采纳,获得10
30秒前
小子一阿一完成签到,获得积分10
31秒前
shelly发布了新的文献求助10
32秒前
玖Nine发布了新的文献求助10
32秒前
sdjcni完成签到,获得积分10
34秒前
35秒前
123完成签到,获得积分10
35秒前
YuhaoYan完成签到,获得积分20
37秒前
cqy完成签到,获得积分10
39秒前
上官若男应助Jim采纳,获得10
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167