Data reconstruction of daily MODIS chlorophyll-a concentration and spatio-temporal variations in the Northwestern Pacific

环境科学 远洋带 浮游植物 叶绿素a 海洋色 海洋学 遥感 气候学 卫星 地理 地质学 营养物 生态学 生物 工程类 航空航天工程 植物
作者
Mingming Xing,Fengmei Yao,Jiahua Zhang,Xianglei Meng,Lijun Jiang,Yilin Bao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:843: 156981-156981 被引量:14
标识
DOI:10.1016/j.scitotenv.2022.156981
摘要

Sea surface chlorophyll-a concentration (Chl-a) is a key proxy for phytoplankton biomass. Spatio-temporal continuous Chl-a data are important to understand the mechanisms of chlorophyll occurrence and development and track phytoplankton changes. However, the greatest challenge in utilizing daily Chl-a data is massive missing pixels due to orbital position and cloud coverage. This study proposes the application of a spatial filling method using the machine learning-based Extreme Gradient Boosting (BST) to reconstruct missing pixels of daily MODIS Chl-a data from 2007 to 2018. The approach is applied to different trophic biogeographical subregions of the Northwestern Pacific where it has complex phytoplankton dynamics and frequent data missing. Various environmental variables are taken into consideration, including meteorological forcing, geographic and topographic features, and oceanic physical components. The BST-reconstructed Chl-a (BST Chl-a) is validated using in-situ Chl-a measurements, VIIRS and Himawari-8 Chl-a products. The results show that the BST model is highly adaptive in reconstructing Chl-a data, and it performs well in pelagic, offshore and coastal with the best performance in pelagic. BST Chl-a improves coverage without significant quality degradation compared to the original MODIS Chl-a. BST Chl-a agrees better with in-situ data than that of MODIS, with CC of 0.742, RMSE of 0.247, MAE of 0.202 and Bias of 0.089. Cross-satellite validation using VIIRS and Himawari-8 Chl-a also shows promising results with the CC of 0.861 and 0.765, respectively, suggesting the high accuracy of BST Chl-a. The inter-annual trend of BST Chl-a decreases in coastal and increases in offshore and pelagic. BST Chl-a images present similar spatial patterns to MODIS Chl-a under different missing rates, with gradual decreases from coastal to pelagic. It indicates that phytoplankton bloom patterns can be identified by daily BST Chl-a images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
carly完成签到 ,获得积分10
5秒前
无敌暴龙学神完成签到,获得积分10
5秒前
6秒前
无为完成签到,获得积分10
7秒前
颠颠关注了科研通微信公众号
8秒前
小马完成签到,获得积分10
9秒前
10秒前
超级的绿凝完成签到 ,获得积分10
10秒前
瑾玉发布了新的文献求助10
11秒前
楠楠完成签到,获得积分20
12秒前
贪玩夜玉完成签到 ,获得积分10
12秒前
鞑靼发布了新的文献求助10
13秒前
豆浆完成签到 ,获得积分10
13秒前
Moonflower发布了新的文献求助20
14秒前
15秒前
15秒前
东C东C完成签到 ,获得积分20
15秒前
20秒前
东C东C发布了新的文献求助10
20秒前
22秒前
桀桀发布了新的文献求助10
23秒前
爆米花应助Wenpandaen采纳,获得10
25秒前
bkagyin应助鞑靼采纳,获得10
26秒前
大个应助渝安采纳,获得10
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
流流124141发布了新的文献求助10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
28秒前
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
镜哥完成签到,获得积分10
28秒前
30秒前
今后应助YI点半的飞机场采纳,获得10
32秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825