EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis

接收机工作特性 机器学习 医学 人工智能 急性胰腺炎 自举(财务) 曲线下面积 计算机科学 内科学 计量经济学 数学
作者
Balázs Kui,József Pintér,Roland Molontay,Marcell Nagy,Nelli Farkas,Noémi Gede,Áron Vincze,Judit Bajor,Szilárd Gódi,József Czimmer,Imre Szabó,Anita Illés,Patrícia Sarlós,Roland Hágendorn,Gabriella Pár,Mária Papp,Zsuzsanna Vitális,György Kovács,Eszter Fehér,Ildikó Földi
出处
期刊:Clinical and translational medicine [Wiley]
卷期号:12 (6): e842-e842 被引量:82
标识
DOI:10.1002/ctm2.842
摘要

Abstract Background Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many parameters or at least 24 h to predict the severity; therefore, the early therapeutic window is often missed. Methods The early achievable severity index (EASY) is a multicentre, multinational, prospective and observational study (ISRCTN10525246). The predictions were made using machine learning models. We used the scikit‐learn, xgboost and catboost Python packages for modelling. We evaluated our models using fourfold cross‐validation, and the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and accuracy metrics were calculated on the union of the test sets of the cross‐validation. The most critical factors and their contribution to the prediction were identified using a modern tool of explainable artificial intelligence called SHapley Additive exPlanations (SHAP). Results The prediction model was based on an international cohort of 1184 patients and a validation cohort of 3543 patients. The best performing model was an XGBoost classifier with an average AUC score of 0.81 ± 0.033 and an accuracy of 89.1%, and the model improved with experience. The six most influential features were the respiratory rate, body temperature, abdominal muscular reflex, gender, age and glucose level. Using the XGBoost machine learning algorithm for prediction, the SHAP values for the explanation and the bootstrapping method to estimate confidence, we developed a free and easy‐to‐use web application in the Streamlit Python‐based framework (http://easy‐app.org/). Conclusions The EASY prediction score is a practical tool for identifying patients at high risk for severe AP within hours of hospital admission. The web application is available for clinicians and contributes to the improvement of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助杨小鸿采纳,获得10
1秒前
BIGDUCK发布了新的文献求助10
1秒前
王者归来完成签到,获得积分10
2秒前
伶俐鹤轩发布了新的文献求助20
3秒前
zhao完成签到,获得积分10
4秒前
超级手套完成签到,获得积分10
5秒前
Destiny完成签到,获得积分10
6秒前
htt完成签到,获得积分20
7秒前
8秒前
8秒前
jkdzp完成签到 ,获得积分10
8秒前
科研通AI6.1应助欢欢采纳,获得10
8秒前
9秒前
9秒前
11秒前
Itazu完成签到,获得积分10
11秒前
12秒前
公西焱发布了新的文献求助10
12秒前
leemiii完成签到 ,获得积分10
13秒前
14秒前
懦弱的含芙完成签到,获得积分10
15秒前
爱吃瑞士卷完成签到 ,获得积分10
15秒前
nancylan发布了新的文献求助10
15秒前
17秒前
lsrlsr完成签到,获得积分10
17秒前
18秒前
鲤鱼完成签到 ,获得积分10
18秒前
18秒前
19秒前
21秒前
可乐发布了新的文献求助10
21秒前
橙子完成签到 ,获得积分10
23秒前
深井冰发布了新的文献求助10
23秒前
man完成签到 ,获得积分10
24秒前
Leon_Kim发布了新的文献求助10
24秒前
xiaolu发布了新的文献求助10
25秒前
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978