EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis

接收机工作特性 机器学习 医学 人工智能 急性胰腺炎 自举(财务) 曲线下面积 计算机科学 内科学 计量经济学 数学
作者
Balázs Kui,József Pintér,Roland Molontay,Marcell Nagy,Nelli Farkas,Noémi Gede,Áron Vincze,Judit Bajor,Szilárd Gódi,József Czimmer,Imre Szabó,Anita Illés,Silvia Patrícia,Roland Hágendorn,Gabriella Pár,Mária Papp,Zsuzsanna Vitális,György Kovács,Eszter Fehér,Ildikó Földi,Ferenc Izbéki,László Gajdán,R Fejes,Balázs Csaba Németh,Imola Török,Hunor Farkas,Artautas Mickevičius,Ville Sallinen,Shamil Galeev,Elena Ramírez-Maldonado,Andrea Párniczky,Bálint Erőss,Péter Hegyi,M Korbonits,Szilárd Váncsa,Robert Sutton,Peter Szatmary,Diane Latawiec,Chris Halloran,Enrique de‐Madaria,Elizabeth Pando,Piero Alberti,María José Gómez-Jurado,Alina Tanţău,Andrea Szentesi,Péter Hegyi
出处
期刊:Clinical and translational medicine [Wiley]
卷期号:12 (6) 被引量:41
标识
DOI:10.1002/ctm2.842
摘要

Abstract Background Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many parameters or at least 24 h to predict the severity; therefore, the early therapeutic window is often missed. Methods The early achievable severity index (EASY) is a multicentre, multinational, prospective and observational study (ISRCTN10525246). The predictions were made using machine learning models. We used the scikit‐learn, xgboost and catboost Python packages for modelling. We evaluated our models using fourfold cross‐validation, and the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and accuracy metrics were calculated on the union of the test sets of the cross‐validation. The most critical factors and their contribution to the prediction were identified using a modern tool of explainable artificial intelligence called SHapley Additive exPlanations (SHAP). Results The prediction model was based on an international cohort of 1184 patients and a validation cohort of 3543 patients. The best performing model was an XGBoost classifier with an average AUC score of 0.81 ± 0.033 and an accuracy of 89.1%, and the model improved with experience. The six most influential features were the respiratory rate, body temperature, abdominal muscular reflex, gender, age and glucose level. Using the XGBoost machine learning algorithm for prediction, the SHAP values for the explanation and the bootstrapping method to estimate confidence, we developed a free and easy‐to‐use web application in the Streamlit Python‐based framework (http://easy‐app.org/). Conclusions The EASY prediction score is a practical tool for identifying patients at high risk for severe AP within hours of hospital admission. The web application is available for clinicians and contributes to the improvement of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助Change_Jing采纳,获得30
1秒前
1秒前
sword完成签到,获得积分10
1秒前
ding发布了新的文献求助10
2秒前
2秒前
ebbinghuazhu完成签到,获得积分10
3秒前
七安得安完成签到,获得积分10
4秒前
星辰大海应助SCI随缘采纳,获得10
6秒前
七安得安发布了新的文献求助10
7秒前
8秒前
aldiwda发布了新的文献求助50
10秒前
12秒前
缓慢海蓝完成签到 ,获得积分10
13秒前
13秒前
俭朴羊青发布了新的文献求助10
15秒前
丁墨完成签到 ,获得积分10
16秒前
充电宝应助柒月采纳,获得10
16秒前
ding应助YI点半的飞机场采纳,获得10
16秒前
无花果应助潘梁恺采纳,获得10
17秒前
慕青应助阔达的盼波采纳,获得10
18秒前
顾矜应助开画采纳,获得10
19秒前
20秒前
我爱乒乓球完成签到,获得积分10
20秒前
20秒前
香蕉觅云应助项阑悦采纳,获得10
21秒前
上好发布了新的文献求助10
21秒前
23秒前
24秒前
25秒前
丘比特应助mxq采纳,获得10
25秒前
all4sci发布了新的文献求助10
27秒前
XiongLuck发布了新的文献求助10
27秒前
Hello应助小可爱采纳,获得10
28秒前
29秒前
哎哟完成签到,获得积分10
29秒前
脑洞疼应助傲娇的航空采纳,获得10
30秒前
不配.应助南风知我意采纳,获得20
33秒前
34秒前
34秒前
木木栊完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825