亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IntegrateCF: Integrating explicit and implicit feedback based on deep learning collaborative filtering algorithm

计算机科学 协同过滤 人工智能 算法 机器学习 推荐系统
作者
Mohammed Fadhel Aljunid,Manjaiah Doddaghatta Huchaiah
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 117933-117933 被引量:15
标识
DOI:10.1016/j.eswa.2022.117933
摘要

• We proposed a novel recommendation system based on collaborative filtering. • It is a combination of explicit (Intra & Inter) and implicit feedback interaction couplings. • It solves the cold start and sparsity problems of collaborative filtering methods. Due to the expansion of e-business, the availability of products on the internet has massively increased. Finding suitable stuff from the vast array of products available on the internet is a time-consuming task. Collaborative Filtering (CF) is the most effective recommendation method for providing users with the ability to identify relevant content and, therefore, increase engagement. However, CF has several flaws, including data sparsity and cold start problems. These are ongoing research questions that pose major hurdles to the precision of the algorithms. Therefore, in this work, a novel neural recommendation model is proposed based on non-independent and identically distributed (Non-IID) for CF by incorporating explicit and implicit coupling interaction. The explicit interactions consist of two models, namely Intra-coupling interactions within users and items, and Inter-coupling interactions between different users and items concerning the attributes of users and items. The Intra-coupled model learns using deep learning convolutional neural networks and is combined with the Inter-coupled model. Besides explicit coupling interactions, we present a Generalized Matrix Factorization Bias (GMFB) model that systematically trains the implicit user-item coupling. Finally, we combined with explicit and implicit coupling interactions within and between users and items accompanying the extra information about users and items under a framework called “IntegrateCF.” Extensive experiments on two large real-world datasets have shown that the proposed model performs better than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Gilbert发布了新的文献求助30
5秒前
吃了吃了完成签到,获得积分10
7秒前
搞怪的白云完成签到 ,获得积分10
11秒前
可爱的函函应助数理化采纳,获得10
12秒前
Gilbert完成签到,获得积分10
15秒前
xiaohardy完成签到,获得积分10
15秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
ZB完成签到,获得积分10
22秒前
辣条我有呀完成签到,获得积分10
33秒前
37秒前
Robert发布了新的文献求助10
43秒前
咸鸭蛋完成签到 ,获得积分10
50秒前
董大海发布了新的文献求助80
51秒前
科研通AI6应助呆萌剑封采纳,获得30
53秒前
57秒前
57秒前
1分钟前
Everything完成签到,获得积分10
1分钟前
怦然心动发布了新的文献求助30
1分钟前
ceeray23发布了新的文献求助20
1分钟前
SHF完成签到,获得积分10
1分钟前
星辰大海应助科研白采纳,获得10
1分钟前
隐形曼青应助沐兮采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
沐兮发布了新的文献求助10
1分钟前
1分钟前
1分钟前
乐乐应助怦然心动采纳,获得10
1分钟前
2分钟前
2分钟前
传奇3应助鳄鱼不做饿梦采纳,获得10
2分钟前
林森森发布了新的文献求助10
2分钟前
111发布了新的文献求助10
2分钟前
敞敞亮亮完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573343
求助须知:如何正确求助?哪些是违规求助? 4659427
关于积分的说明 14724572
捐赠科研通 4599247
什么是DOI,文献DOI怎么找? 2524237
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737