IntegrateCF: Integrating explicit and implicit feedback based on deep learning collaborative filtering algorithm

计算机科学 协同过滤 人工智能 算法 机器学习 推荐系统
作者
Mohammed Fadhel Aljunid,Manjaiah Doddaghatta Huchaiah
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 117933-117933 被引量:15
标识
DOI:10.1016/j.eswa.2022.117933
摘要

• We proposed a novel recommendation system based on collaborative filtering. • It is a combination of explicit (Intra & Inter) and implicit feedback interaction couplings. • It solves the cold start and sparsity problems of collaborative filtering methods. Due to the expansion of e-business, the availability of products on the internet has massively increased. Finding suitable stuff from the vast array of products available on the internet is a time-consuming task. Collaborative Filtering (CF) is the most effective recommendation method for providing users with the ability to identify relevant content and, therefore, increase engagement. However, CF has several flaws, including data sparsity and cold start problems. These are ongoing research questions that pose major hurdles to the precision of the algorithms. Therefore, in this work, a novel neural recommendation model is proposed based on non-independent and identically distributed (Non-IID) for CF by incorporating explicit and implicit coupling interaction. The explicit interactions consist of two models, namely Intra-coupling interactions within users and items, and Inter-coupling interactions between different users and items concerning the attributes of users and items. The Intra-coupled model learns using deep learning convolutional neural networks and is combined with the Inter-coupled model. Besides explicit coupling interactions, we present a Generalized Matrix Factorization Bias (GMFB) model that systematically trains the implicit user-item coupling. Finally, we combined with explicit and implicit coupling interactions within and between users and items accompanying the extra information about users and items under a framework called “IntegrateCF.” Extensive experiments on two large real-world datasets have shown that the proposed model performs better than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIUBEN发布了新的文献求助10
刚刚
完美世界应助舒适新梅采纳,获得10
刚刚
红烧茄子发布了新的文献求助10
刚刚
kalani发布了新的文献求助10
1秒前
不配.应助牛牛采纳,获得20
1秒前
科研通AI2S应助momo采纳,获得20
2秒前
3秒前
ljlcyx完成签到,获得积分10
4秒前
友00000发布了新的文献求助10
5秒前
波波玛奇朵完成签到,获得积分10
7秒前
过时的砖头完成签到 ,获得积分10
7秒前
鄒鄒应助加减乘除采纳,获得10
7秒前
7秒前
CodeCraft应助@_@采纳,获得10
8秒前
红烧茄子完成签到,获得积分10
9秒前
9秒前
英俊的铭应助zhaof采纳,获得10
9秒前
慕青应助子车谷波采纳,获得10
10秒前
小香草完成签到,获得积分20
13秒前
脑洞疼应助自然的亦巧采纳,获得10
13秒前
14秒前
淡淡从阳完成签到,获得积分10
15秒前
美好凝莲完成签到,获得积分10
15秒前
15秒前
FashionBoy应助旺仔采纳,获得10
15秒前
娃哈哈发布了新的文献求助10
16秒前
温柔的尔冬完成签到,获得积分10
16秒前
ardejiang发布了新的文献求助10
17秒前
李神奇应助鬼鬼的眼睛采纳,获得10
17秒前
20秒前
大个应助les采纳,获得10
20秒前
小香草发布了新的文献求助10
21秒前
22秒前
panda完成签到,获得积分20
22秒前
自然的亦巧完成签到,获得积分10
22秒前
22秒前
开心瓜瓜瓜完成签到,获得积分10
23秒前
26秒前
调研昵称发布了新的文献求助10
26秒前
28秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3176928
求助须知:如何正确求助?哪些是违规求助? 2828217
关于积分的说明 7965292
捐赠科研通 2489089
什么是DOI,文献DOI怎么找? 1326861
科研通“疑难数据库(出版商)”最低求助积分说明 635108
版权声明 602871