IntegrateCF: Integrating explicit and implicit feedback based on deep learning collaborative filtering algorithm

计算机科学 协同过滤 人工智能 算法 机器学习 推荐系统
作者
Mohammed Fadhel Aljunid,Manjaiah Doddaghatta Huchaiah
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 117933-117933 被引量:15
标识
DOI:10.1016/j.eswa.2022.117933
摘要

• We proposed a novel recommendation system based on collaborative filtering. • It is a combination of explicit (Intra & Inter) and implicit feedback interaction couplings. • It solves the cold start and sparsity problems of collaborative filtering methods. Due to the expansion of e-business, the availability of products on the internet has massively increased. Finding suitable stuff from the vast array of products available on the internet is a time-consuming task. Collaborative Filtering (CF) is the most effective recommendation method for providing users with the ability to identify relevant content and, therefore, increase engagement. However, CF has several flaws, including data sparsity and cold start problems. These are ongoing research questions that pose major hurdles to the precision of the algorithms. Therefore, in this work, a novel neural recommendation model is proposed based on non-independent and identically distributed (Non-IID) for CF by incorporating explicit and implicit coupling interaction. The explicit interactions consist of two models, namely Intra-coupling interactions within users and items, and Inter-coupling interactions between different users and items concerning the attributes of users and items. The Intra-coupled model learns using deep learning convolutional neural networks and is combined with the Inter-coupled model. Besides explicit coupling interactions, we present a Generalized Matrix Factorization Bias (GMFB) model that systematically trains the implicit user-item coupling. Finally, we combined with explicit and implicit coupling interactions within and between users and items accompanying the extra information about users and items under a framework called “IntegrateCF.” Extensive experiments on two large real-world datasets have shown that the proposed model performs better than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扭捏的扭捏完成签到,获得积分10
刚刚
1秒前
junjie完成签到,获得积分10
1秒前
刘47完成签到,获得积分10
2秒前
浅行完成签到,获得积分10
2秒前
2秒前
2秒前
gzh完成签到,获得积分10
2秒前
可耐的手机完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
3秒前
浮游应助Zxxz采纳,获得10
3秒前
4秒前
柳暗花明1302完成签到,获得积分10
4秒前
龙眼完成签到,获得积分10
4秒前
咕噜咕噜咕应助JOE采纳,获得10
4秒前
LucyLi完成签到,获得积分10
5秒前
ZEM完成签到,获得积分10
5秒前
冰墩墩完成签到,获得积分10
5秒前
hunter完成签到,获得积分10
5秒前
bai完成签到,获得积分10
5秒前
宁静致远QY完成签到,获得积分10
5秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
momo应助科研通管家采纳,获得200
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
w2503完成签到,获得积分10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
竞鹤应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
飞飞应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
Ava应助大地星辰变采纳,获得10
7秒前
丹D应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
Janice完成签到,获得积分10
7秒前
西瓜橙子完成签到,获得积分10
7秒前
zz完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584999
求助须知:如何正确求助?哪些是违规求助? 4668850
关于积分的说明 14772776
捐赠科研通 4616602
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467641