IntegrateCF: Integrating explicit and implicit feedback based on deep learning collaborative filtering algorithm

计算机科学 协同过滤 人工智能 算法 机器学习 推荐系统
作者
Mohammed Fadhel Aljunid,Manjaiah Doddaghatta Huchaiah
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:207: 117933-117933 被引量:15
标识
DOI:10.1016/j.eswa.2022.117933
摘要

• We proposed a novel recommendation system based on collaborative filtering. • It is a combination of explicit (Intra & Inter) and implicit feedback interaction couplings. • It solves the cold start and sparsity problems of collaborative filtering methods. Due to the expansion of e-business, the availability of products on the internet has massively increased. Finding suitable stuff from the vast array of products available on the internet is a time-consuming task. Collaborative Filtering (CF) is the most effective recommendation method for providing users with the ability to identify relevant content and, therefore, increase engagement. However, CF has several flaws, including data sparsity and cold start problems. These are ongoing research questions that pose major hurdles to the precision of the algorithms. Therefore, in this work, a novel neural recommendation model is proposed based on non-independent and identically distributed (Non-IID) for CF by incorporating explicit and implicit coupling interaction. The explicit interactions consist of two models, namely Intra-coupling interactions within users and items, and Inter-coupling interactions between different users and items concerning the attributes of users and items. The Intra-coupled model learns using deep learning convolutional neural networks and is combined with the Inter-coupled model. Besides explicit coupling interactions, we present a Generalized Matrix Factorization Bias (GMFB) model that systematically trains the implicit user-item coupling. Finally, we combined with explicit and implicit coupling interactions within and between users and items accompanying the extra information about users and items under a framework called “IntegrateCF.” Extensive experiments on two large real-world datasets have shown that the proposed model performs better than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzbbb发布了新的文献求助30
刚刚
1秒前
学术大亨发布了新的文献求助10
2秒前
踏实奇异果完成签到,获得积分10
2秒前
2秒前
老阎应助混沌采纳,获得30
2秒前
3秒前
FFF发布了新的文献求助10
5秒前
倪塔宝贝完成签到 ,获得积分10
5秒前
彭于晏应助liuzhen采纳,获得10
6秒前
6秒前
Behumble完成签到,获得积分10
7秒前
渊思发布了新的文献求助10
9秒前
9秒前
福1950发布了新的文献求助10
10秒前
12秒前
12秒前
紫熊完成签到,获得积分10
12秒前
陈婷婷完成签到,获得积分10
12秒前
bbll完成签到,获得积分10
13秒前
念姬发布了新的文献求助10
14秒前
路脚下完成签到 ,获得积分10
15秒前
fanfan完成签到,获得积分10
16秒前
qingzx完成签到 ,获得积分10
18秒前
19秒前
20秒前
21秒前
Richard发布了新的文献求助10
22秒前
汉堡包应助HH采纳,获得10
23秒前
堪归完成签到 ,获得积分10
23秒前
young发布了新的文献求助10
25秒前
27秒前
35秒前
36秒前
LaTeXer应助潇洒的凝梦采纳,获得30
36秒前
氯丙嗪完成签到 ,获得积分0
37秒前
852应助XiaotianLiu采纳,获得100
37秒前
young完成签到,获得积分20
37秒前
Dreamable完成签到,获得积分10
39秒前
霜二完成签到 ,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343