清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions

生物量(生态学) 热解 产量(工程) 氧气 工艺工程 工作(物理) 制浆造纸工业 预测建模 环境科学 生物燃料 过程(计算) 热解油 化学 石油工程 废物管理 材料科学 计算机科学 工程类 机器学习 农学 有机化学 机械工程 复合材料 生物 操作系统
作者
Ke Yang,Kai Wu,Huiyan Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:254: 124320-124320 被引量:57
标识
DOI:10.1016/j.energy.2022.124320
摘要

The bio-oil produced from biomass pyrolysis offers an important potential alternative to fossil fuels, but the yield and composition of pyrolysis product are impacted by many conditions. This work aims to predict the yield and oxygen content of bio-oil via machine learning tools based on biomass characteristics and pyrolysis conditions. For this purpose, the Random Forest (RF) algorithm is introduced and successfully applied. The performances of trained prediction models are assessed based on the regression coefficient (R2) for the test data. The results shows that the Proximate-Yield model (R2 = 0.925) has the best performance for predicting bio-oil yield, and the Ultimate-O model (R2 = 0.895) has the best performance for predicting the oxygen content of bio-oil. According to feature importance analysis, the heating rate occupied the biggest importance for predicting bio-oil yield, and the internal information of biomass is more important than that of pyrolysis conditions for predicting the bio-oil oxygen content. Besides, the modes of each variable affecting the bio-oil yield and oxygen content are described by partial dependence analysis. This work will provide a new insight for controlling the yield and oxygen content of bio-oil, which is helpful to facilitate the process optimization in engineering application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wmj完成签到,获得积分10
2秒前
Ava应助落寞的又菡采纳,获得10
8秒前
刚子完成签到 ,获得积分10
18秒前
1分钟前
1分钟前
jiejie完成签到,获得积分10
1分钟前
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
耍酷平凡完成签到,获得积分10
2分钟前
荔枝发布了新的文献求助10
2分钟前
2分钟前
连安阳完成签到,获得积分10
3分钟前
3分钟前
荔枝发布了新的文献求助10
4分钟前
丁老三完成签到 ,获得积分10
4分钟前
4分钟前
Jim发布了新的文献求助10
5分钟前
5分钟前
5分钟前
两个榴莲完成签到,获得积分0
5分钟前
5分钟前
Unlisted发布了新的文献求助10
5分钟前
落寞的又菡完成签到,获得积分10
5分钟前
6分钟前
端庄洪纲完成签到 ,获得积分10
6分钟前
7分钟前
米修发布了新的文献求助10
7分钟前
7分钟前
米修完成签到,获得积分20
7分钟前
CodeCraft应助居家小可采纳,获得10
7分钟前
8分钟前
苗苗发布了新的文献求助10
8分钟前
8分钟前
苗苗完成签到 ,获得积分10
8分钟前
loathebm发布了新的文献求助10
8分钟前
NexusExplorer应助loathebm采纳,获得10
8分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
9分钟前
9分钟前
居家小可发布了新的文献求助10
9分钟前
我睡觉的时候不困完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108