Fetal phonocardiogram signals denoising using improved complete ensemble (EMD) with adaptive noise and optimal thresholding of wavelet coefficients

阈值 心音图 希尔伯特-黄变换 小波 降噪 噪音(视频) 模式识别(心理学) 人工智能 信号(编程语言) 计算机科学 离散小波变换 数学 算法 小波变换 语音识别 白噪声 统计 图像(数学) 程序设计语言
作者
Fethi Cheikh,Nasser Edinne Benhassine,Salim Sbaa
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:67 (4): 237-247 被引量:6
标识
DOI:10.1515/bmt-2022-0006
摘要

Abstract Although fetal phonocardiogram (fPCG) signals have become a good indicator for discovered heart disease, they may be contaminated by various noises that reduce the signals quality and the final diagnosis decision. Moreover, the noise may cause the risk of the data to misunderstand the heart signal and to misinterpret it. The main objective of this paper is to effectively remove noise from the fPCG signal to make it clinically feasible. So, we proposed a novel noise reduction method based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), wavelet threshold and Crow Search Algorithm (CSA). This noise reduction method, named ICEEMDAN-DWT-CSA, has three major advantages. They were, (i) A better suppress of mode mixing and a minimized number of IMFs, (ii) A choice of wavelet corresponding to the study signal proven by the literature and (iii) Selection of the optimal threshold value. Firstly, the noisy fPCG signal is decomposed into Intrinsic Mode Functions (IMFs) by the (ICEEMDAN). Each noisy IMFs were decomposed by the Discrete Wavelet Transform (DWT). Then, the optimal threshold value using the (CSA) technique is selected and the thresholding function is carried out in the detail’s coefficients. Secondly, each denoised (IMFs) is reconstructed by applying the Inverse Discrete Wavelet Transform (IDWT). Finally, all these denoised (IMFs) are combined to get the denoised fPCG signal. The performance of the proposed method has been evaluated by Signal to Noise Ratio (SNR), Mean Square Error (MSE) and the Correlation Coefficient (COR). The experiment gave a better result than some standard methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一杯月光完成签到,获得积分10
刚刚
长情的以云完成签到,获得积分10
1秒前
lm发布了新的文献求助10
2秒前
2秒前
束缚完成签到,获得积分10
3秒前
万事胜意发布了新的文献求助10
3秒前
kaige66完成签到,获得积分10
3秒前
biubiuu发布了新的文献求助10
4秒前
ei123完成签到,获得积分10
6秒前
7秒前
PDIF-CN2完成签到,获得积分10
7秒前
姜姜发布了新的文献求助10
7秒前
8秒前
满意的醉蝶完成签到,获得积分10
9秒前
卷aaaa完成签到,获得积分10
9秒前
赘婿应助昂口3采纳,获得10
10秒前
cj完成签到,获得积分10
10秒前
wentong完成签到,获得积分10
10秒前
原野完成签到,获得积分20
11秒前
biubiuu完成签到,获得积分10
11秒前
orixero应助凯睿采纳,获得10
11秒前
12秒前
12秒前
li完成签到,获得积分10
12秒前
14秒前
独特星月完成签到 ,获得积分10
14秒前
15秒前
哥哥喜欢格格完成签到 ,获得积分10
15秒前
五月发布了新的文献求助10
16秒前
二仙桥成华大道完成签到,获得积分10
16秒前
16秒前
香蕉觅云应助含蓄寄文采纳,获得10
16秒前
红黄蓝完成签到 ,获得积分10
18秒前
水门发布了新的文献求助10
18秒前
巴拉巴拉不完成签到,获得积分10
18秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
qise发布了新的文献求助10
21秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199