清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling and predicting rainfall time series using seasonal-trend decomposition and machine learning

计算机科学 系列(地层学) 时间序列 余数 分解 比例(比率) 机器学习 人工智能 气候学 环境科学 气象学 数据挖掘 数学 地理 地图学 地质学 古生物学 生态学 生物 算术
作者
Renfei He,Limao Zhang,Alvin Wei Ze Chew
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109125-109125 被引量:62
标识
DOI:10.1016/j.knosys.2022.109125
摘要

This study presents a hybrid approach that integrates seasonal-trend decomposition and machine learning (termed STL-ML) for predicting the rainfall time series one step ahead based on the historical rainfall and other meteorological (e.g., temperature, humidity, etc.) data. The proposed hybrid STL-ML approach mainly consists of three steps: (1) The seasonal-trend decomposition is used to firstly decompose the rainfall time series into the trend, seasonal, and remainder components; (2) Three different machine learning (ML) models, namely Gated Recurrent Unit (GRU) network, multi-time-scale GRU network, and Light Gradient Boosting Machine (LightGBM) model, are developed for modeling and predicting the three components, respectively; (3) The predicted rainfall is eventually acquired by adding up the predicted values of the three components, and several metrics are used to evaluate the model performance. To verify the applicability and validity of the proposed approach, a case study is conducted on the daily meteorology data collected in Cairns, Australia, from 1st Jan 2000 to 31st Dec 2020. The case study results imply that: (1) Through the seasonal-trend decomposition of the rainfall time series, various patterns and information beneath the rainfall time series can be fully extracted and explicitly demonstrated in its three components, which is beneficial to an accurate rainfall prediction. (2) The GRU network, multi-time-scale GRU network, and LightGBM model can well fit and predict the trend, seasonal, and remainder components, respectively. (3) By adding up the predicted values of the three components, the predicted rainfall shows satisfactory agreement with the ground truth, and a reliable one-step-ahead prediction can be achieved even if an sudden extreme rainfall occurs. (4) The comparisons with three baseline methods further justify the rationality and effectiveness of the hybrid STL-ML approach. The novelty of the proposed STL-ML approach lies in its capabilities of (1) fully extracting and utilizing the information in every regard to predict rainfall; (2) providing a good one-step-ahead rainfall estimation for sudden heavy rainfall events. Therefore, it can be used as an essential complement to numerical rainfall prediction and thus can play a crucial role in flood prediction and hydrological disaster control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丹妮完成签到 ,获得积分10
9秒前
19秒前
怕孤独的访云完成签到 ,获得积分10
23秒前
BaooooooMao完成签到,获得积分10
28秒前
lilylwy完成签到 ,获得积分0
47秒前
三十四画生完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
你好完成签到 ,获得积分0
1分钟前
coolplex完成签到 ,获得积分10
1分钟前
阜睿完成签到 ,获得积分10
1分钟前
Antonio完成签到 ,获得积分10
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
AQ完成签到,获得积分10
1分钟前
kittymin发布了新的文献求助10
1分钟前
1分钟前
Jasper应助火星上的飞松采纳,获得10
1分钟前
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
权小夏完成签到 ,获得积分10
2分钟前
kittymin完成签到,获得积分10
2分钟前
NS完成签到,获得积分10
2分钟前
iShine完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
简奥斯汀完成签到 ,获得积分10
2分钟前
啊啊啊完成签到 ,获得积分10
3分钟前
3分钟前
姚芭蕉完成签到 ,获得积分0
3分钟前
杨宁完成签到 ,获得积分10
3分钟前
顾初安完成签到,获得积分10
3分钟前
3分钟前
3分钟前
旺大财完成签到 ,获得积分10
3分钟前
3分钟前
一剑温柔完成签到 ,获得积分10
3分钟前
夜空的光芒完成签到 ,获得积分10
3分钟前
深情安青应助积极的初南采纳,获得10
3分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686811
求助须知:如何正确求助?哪些是违规求助? 3237170
关于积分的说明 9829504
捐赠科研通 2949071
什么是DOI,文献DOI怎么找? 1617226
邀请新用户注册赠送积分活动 764126
科研通“疑难数据库(出版商)”最低求助积分说明 738360