已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Complete and accurate holly fruits counting using YOLOX object detection

果园 人工智能 目标检测 数学 树(集合论) 计算机视觉 计算机科学 模式识别(心理学) 影子(心理学) 园艺 心理治疗师 数学分析 心理学 生物
作者
Yanchao Zhang,Wenbo Zhang,Jiya Yu,Leiying He,Jianneng Chen,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107062-107062 被引量:58
标识
DOI:10.1016/j.compag.2022.107062
摘要

Fruits counting is important in management of orchard and plantation since better decision for labor and logistic can be made based on complete and accurate counting of fruits. Computer vision-based fruits counting has been research focus as it’s an automatic way for recognition of dense fruit on the branch. However, complete fruits counting of a whole tree hasn’t hardly been studied. And there is a lack of robust and accurate fruits counting method in complex orchard scenarios, like covering, shadow, clustering in image. In this paper, a panoramic method for fruit complete yield counting based on deep learning object detection is proposed, and was validated on a holly tree with dense fruits. Firstly, images were taken surrounding the fruit trees using UAV, and SIFT based images matching were performed to form a complete panoramic unfolding map of the fruit tree surface. Then, a YOLOX object detection network was built and trained with novel samples augmentation and composition strategies. Finally, fruits counting YOLOX was performed on the panorama to count the whole plant fruits number. The accuracy and effectiveness of this method were tested at different scales and scenarios. The results show that: (1) high-quality panoramic images can be built for an accurate fruit number counting. (2) The Statistical Rate (SR) between detected number and actual number is as high as SR > 96% when the ring shot parameter of Holly tree is R ≤ 1.2 m, SR > 95% when R ≤ 1.6 m. The Detection Rate between detected number and captured number in the panorama image is over 99% when R ≤ 1.2 m and over 97% when R ≤ 2.0 m. The result is superior to previous researches. (3) it has good robustness against shading, covering, incomplete contour. Comparisons between the proposed method and other methods has been done and the result show the proposed method is the most effective in fruits counting. Moreover, we proposed and verified the positive effects of Gaussian convolution kernel and γ-component control on fruit detection rate. The YOLOX-based fruit counting method can be extended to a wide range of fruits, like apples, lychee and so. Moreover, YOLOX has excellent inferencing efficiency which makes it a good potential for real-time application in orchard and plantation management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Lucas应助洞两采纳,获得10
7秒前
刻苦小鸭子完成签到,获得积分10
8秒前
化工渣渣完成签到,获得积分10
13秒前
Yuanyuan发布了新的文献求助10
14秒前
藿香ZQ水完成签到 ,获得积分10
15秒前
RYYYYYYY233完成签到 ,获得积分10
17秒前
Lucas应助1206425219密采纳,获得10
18秒前
山阳县藏兵洞谷二完成签到,获得积分10
19秒前
Sunziy完成签到,获得积分10
20秒前
科研通AI6应助fyp采纳,获得10
21秒前
23秒前
26秒前
等待飞松完成签到,获得积分20
27秒前
北风那个崔完成签到 ,获得积分10
28秒前
vvvvba0202发布了新的文献求助10
30秒前
32秒前
33秒前
34秒前
36秒前
1206425219密发布了新的文献求助10
37秒前
38秒前
flyboy发布了新的文献求助10
41秒前
43秒前
月儿完成签到 ,获得积分10
46秒前
1206425219密完成签到,获得积分10
48秒前
洞两发布了新的文献求助10
48秒前
科研通AI6应助vvvvba0202采纳,获得10
48秒前
开心的寄灵完成签到 ,获得积分10
51秒前
恋晨完成签到 ,获得积分10
51秒前
NOTHING完成签到 ,获得积分10
56秒前
pass完成签到 ,获得积分10
58秒前
后陡门爱神完成签到 ,获得积分10
58秒前
杨明智完成签到 ,获得积分10
1分钟前
梦里的大子刊完成签到 ,获得积分10
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
等待飞松发布了新的文献求助30
1分钟前
蛙蛙完成签到,获得积分10
1分钟前
敬业乐群完成签到,获得积分10
1分钟前
领导范儿应助33采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561167
求助须知:如何正确求助?哪些是违规求助? 4646320
关于积分的说明 14678320
捐赠科研通 4587573
什么是DOI,文献DOI怎么找? 2517149
邀请新用户注册赠送积分活动 1490439
关于科研通互助平台的介绍 1461340