亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Complete and accurate holly fruits counting using YOLOX object detection

果园 人工智能 目标检测 数学 树(集合论) 计算机视觉 计算机科学 模式识别(心理学) 影子(心理学) 园艺 心理治疗师 数学分析 心理学 生物
作者
Yanchao Zhang,Wenbo Zhang,Jiya Yu,Leiying He,Jianneng Chen,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107062-107062 被引量:58
标识
DOI:10.1016/j.compag.2022.107062
摘要

Fruits counting is important in management of orchard and plantation since better decision for labor and logistic can be made based on complete and accurate counting of fruits. Computer vision-based fruits counting has been research focus as it’s an automatic way for recognition of dense fruit on the branch. However, complete fruits counting of a whole tree hasn’t hardly been studied. And there is a lack of robust and accurate fruits counting method in complex orchard scenarios, like covering, shadow, clustering in image. In this paper, a panoramic method for fruit complete yield counting based on deep learning object detection is proposed, and was validated on a holly tree with dense fruits. Firstly, images were taken surrounding the fruit trees using UAV, and SIFT based images matching were performed to form a complete panoramic unfolding map of the fruit tree surface. Then, a YOLOX object detection network was built and trained with novel samples augmentation and composition strategies. Finally, fruits counting YOLOX was performed on the panorama to count the whole plant fruits number. The accuracy and effectiveness of this method were tested at different scales and scenarios. The results show that: (1) high-quality panoramic images can be built for an accurate fruit number counting. (2) The Statistical Rate (SR) between detected number and actual number is as high as SR > 96% when the ring shot parameter of Holly tree is R ≤ 1.2 m, SR > 95% when R ≤ 1.6 m. The Detection Rate between detected number and captured number in the panorama image is over 99% when R ≤ 1.2 m and over 97% when R ≤ 2.0 m. The result is superior to previous researches. (3) it has good robustness against shading, covering, incomplete contour. Comparisons between the proposed method and other methods has been done and the result show the proposed method is the most effective in fruits counting. Moreover, we proposed and verified the positive effects of Gaussian convolution kernel and γ-component control on fruit detection rate. The YOLOX-based fruit counting method can be extended to a wide range of fruits, like apples, lychee and so. Moreover, YOLOX has excellent inferencing efficiency which makes it a good potential for real-time application in orchard and plantation management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
瑞雪发布了新的文献求助10
14秒前
瑞雪完成签到,获得积分10
22秒前
24秒前
37秒前
46秒前
49秒前
Cmqq发布了新的文献求助10
50秒前
充电宝应助zhouxunnjau采纳,获得10
52秒前
果果发布了新的文献求助10
56秒前
所所应助Cmqq采纳,获得10
59秒前
小马甲应助吱吱草莓派采纳,获得10
1分钟前
欣喜秋天完成签到,获得积分20
1分钟前
领导范儿应助吱吱草莓派采纳,获得10
1分钟前
1分钟前
大牛牛完成签到,获得积分10
1分钟前
过眼云烟完成签到,获得积分10
1分钟前
求学发布了新的文献求助10
1分钟前
1分钟前
clickable发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
佳佳发布了新的文献求助10
1分钟前
果果完成签到,获得积分20
1分钟前
共享精神应助孔踏歌采纳,获得10
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
吃瓜群众完成签到,获得积分10
1分钟前
zhouxunnjau发布了新的文献求助10
2分钟前
小江发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
完美世界应助小江采纳,获得10
2分钟前
求学完成签到,获得积分10
2分钟前
在水一方应助求学采纳,获得10
2分钟前
loser完成签到 ,获得积分10
2分钟前
大模型应助Cmqq采纳,获得10
2分钟前
清浅完成签到 ,获得积分10
2分钟前
zeice完成签到 ,获得积分10
2分钟前
阔达白凡完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904