Complete and accurate holly fruits counting using YOLOX object detection

果园 人工智能 目标检测 数学 树(集合论) 计算机视觉 计算机科学 模式识别(心理学) 影子(心理学) 园艺 心理治疗师 数学分析 心理学 生物
作者
Yanchao Zhang,Wenbo Zhang,Jiya Yu,Leiying He,Jianneng Chen,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107062-107062 被引量:58
标识
DOI:10.1016/j.compag.2022.107062
摘要

Fruits counting is important in management of orchard and plantation since better decision for labor and logistic can be made based on complete and accurate counting of fruits. Computer vision-based fruits counting has been research focus as it’s an automatic way for recognition of dense fruit on the branch. However, complete fruits counting of a whole tree hasn’t hardly been studied. And there is a lack of robust and accurate fruits counting method in complex orchard scenarios, like covering, shadow, clustering in image. In this paper, a panoramic method for fruit complete yield counting based on deep learning object detection is proposed, and was validated on a holly tree with dense fruits. Firstly, images were taken surrounding the fruit trees using UAV, and SIFT based images matching were performed to form a complete panoramic unfolding map of the fruit tree surface. Then, a YOLOX object detection network was built and trained with novel samples augmentation and composition strategies. Finally, fruits counting YOLOX was performed on the panorama to count the whole plant fruits number. The accuracy and effectiveness of this method were tested at different scales and scenarios. The results show that: (1) high-quality panoramic images can be built for an accurate fruit number counting. (2) The Statistical Rate (SR) between detected number and actual number is as high as SR > 96% when the ring shot parameter of Holly tree is R ≤ 1.2 m, SR > 95% when R ≤ 1.6 m. The Detection Rate between detected number and captured number in the panorama image is over 99% when R ≤ 1.2 m and over 97% when R ≤ 2.0 m. The result is superior to previous researches. (3) it has good robustness against shading, covering, incomplete contour. Comparisons between the proposed method and other methods has been done and the result show the proposed method is the most effective in fruits counting. Moreover, we proposed and verified the positive effects of Gaussian convolution kernel and γ-component control on fruit detection rate. The YOLOX-based fruit counting method can be extended to a wide range of fruits, like apples, lychee and so. Moreover, YOLOX has excellent inferencing efficiency which makes it a good potential for real-time application in orchard and plantation management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
时尚白晴完成签到 ,获得积分10
1秒前
AL发布了新的文献求助10
2秒前
2秒前
ZML314完成签到,获得积分10
3秒前
乔木发布了新的文献求助10
3秒前
haha完成签到,获得积分10
4秒前
5秒前
现代的花生完成签到,获得积分10
5秒前
科研通AI6.1应助hy123123采纳,获得30
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
紧张的眼睛完成签到 ,获得积分10
7秒前
任驰骋完成签到,获得积分10
8秒前
有故无陨完成签到,获得积分10
8秒前
8秒前
AL完成签到,获得积分10
9秒前
清爽的人龙完成签到 ,获得积分10
9秒前
9秒前
10秒前
薏晓完成签到 ,获得积分10
10秒前
11秒前
馨达子发布了新的文献求助10
12秒前
12秒前
Jiayee发布了新的文献求助20
12秒前
darkside发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
魔幻颜发布了新的文献求助10
16秒前
cindy发布了新的文献求助10
16秒前
16秒前
天天向上完成签到 ,获得积分10
17秒前
激昂的吐司完成签到,获得积分10
18秒前
馨达子完成签到,获得积分10
20秒前
Eileen发布了新的文献求助30
21秒前
有脾气的番茄完成签到,获得积分10
21秒前
21秒前
王好完成签到 ,获得积分10
21秒前
22秒前
22秒前
Jasper应助polymer采纳,获得10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851