Complete and accurate holly fruits counting using YOLOX object detection

果园 人工智能 目标检测 数学 树(集合论) 计算机视觉 计算机科学 模式识别(心理学) 影子(心理学) 园艺 心理治疗师 数学分析 心理学 生物
作者
Yanchao Zhang,Wenbo Zhang,Jiya Yu,Leiying He,Jianneng Chen,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107062-107062 被引量:58
标识
DOI:10.1016/j.compag.2022.107062
摘要

Fruits counting is important in management of orchard and plantation since better decision for labor and logistic can be made based on complete and accurate counting of fruits. Computer vision-based fruits counting has been research focus as it’s an automatic way for recognition of dense fruit on the branch. However, complete fruits counting of a whole tree hasn’t hardly been studied. And there is a lack of robust and accurate fruits counting method in complex orchard scenarios, like covering, shadow, clustering in image. In this paper, a panoramic method for fruit complete yield counting based on deep learning object detection is proposed, and was validated on a holly tree with dense fruits. Firstly, images were taken surrounding the fruit trees using UAV, and SIFT based images matching were performed to form a complete panoramic unfolding map of the fruit tree surface. Then, a YOLOX object detection network was built and trained with novel samples augmentation and composition strategies. Finally, fruits counting YOLOX was performed on the panorama to count the whole plant fruits number. The accuracy and effectiveness of this method were tested at different scales and scenarios. The results show that: (1) high-quality panoramic images can be built for an accurate fruit number counting. (2) The Statistical Rate (SR) between detected number and actual number is as high as SR > 96% when the ring shot parameter of Holly tree is R ≤ 1.2 m, SR > 95% when R ≤ 1.6 m. The Detection Rate between detected number and captured number in the panorama image is over 99% when R ≤ 1.2 m and over 97% when R ≤ 2.0 m. The result is superior to previous researches. (3) it has good robustness against shading, covering, incomplete contour. Comparisons between the proposed method and other methods has been done and the result show the proposed method is the most effective in fruits counting. Moreover, we proposed and verified the positive effects of Gaussian convolution kernel and γ-component control on fruit detection rate. The YOLOX-based fruit counting method can be extended to a wide range of fruits, like apples, lychee and so. Moreover, YOLOX has excellent inferencing efficiency which makes it a good potential for real-time application in orchard and plantation management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生发布了新的文献求助10
刚刚
大气海露发布了新的文献求助10
1秒前
JamesPei应助yuxiao采纳,获得10
1秒前
ruochenzu发布了新的文献求助10
1秒前
1秒前
2秒前
123发布了新的文献求助10
3秒前
听弦发布了新的文献求助10
3秒前
Yuxiao应助moumou采纳,获得10
4秒前
5秒前
5秒前
快乐小袁发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
科研通AI2S应助Sg采纳,获得10
7秒前
8秒前
汉堡包应助大气海露采纳,获得10
8秒前
9秒前
王王关注了科研通微信公众号
9秒前
单薄的茈完成签到,获得积分10
10秒前
hh完成签到,获得积分10
11秒前
小卢同学发布了新的文献求助10
11秒前
zzl发布了新的文献求助20
11秒前
上官若男应助齐齐采纳,获得10
11秒前
小何又学累了完成签到 ,获得积分10
12秒前
12秒前
12秒前
柴胡发布了新的文献求助10
12秒前
13秒前
xiaocongx完成签到,获得积分10
13秒前
白十二发布了新的文献求助10
13秒前
hooka完成签到,获得积分10
14秒前
14秒前
子南发布了新的文献求助10
14秒前
16秒前
Meredith发布了新的文献求助10
16秒前
爱大美发布了新的文献求助10
17秒前
梁启晨完成签到 ,获得积分10
18秒前
天天快乐应助安世倌采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075882
求助须知:如何正确求助?哪些是违规求助? 2728806
关于积分的说明 7506117
捐赠科研通 2377016
什么是DOI,文献DOI怎么找? 1260379
科研通“疑难数据库(出版商)”最低求助积分说明 610960
版权声明 597151