Automatic measurement of the patellofemoral joint parameters in the Laurin view: a deep learning–based approach

组内相关 人工智能 试验装置 标准差 相关系数 统计 数学 计算机科学 再现性
作者
E Tuya,Rile Nai,Xiang Liu,Cen Wang,Jing Liu,Shijia Li,Jiahao Huang,Junhua Yu,Yaofeng Zhang,Weipeng Liu,Xiaodong Zhang,Xiaoying Wang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (1): 566-577 被引量:5
标识
DOI:10.1007/s00330-022-08967-1
摘要

ObjectivesTo explore the performance of a deep learning–based algorithm for automatic patellofemoral joint (PFJ) parameter measurements from the Laurin view.MethodsA total of 1431 consecutive Laurin views of the PFJ were retrospectively collected and divided into two parts: (1) the model development dataset (dataset 1, n = 1230) and (2) the hold-out test set (dataset 2, n = 201). Dataset 1 was used to develop the U-shaped fully convolutional network (U-Net) model to segment the landmarks of the PFJ. Based on the predicted landmarks, the PFJ parameters were calculated, including the sulcus angle (SA), congruence angle (CA), patellofemoral ratio (PFR), and lateral patellar tilt (LPT). Dataset 2 was used to assess the model performance. The mean of three radiologists who independently measured the PFJ parameters was defined as the reference standard. Model performance was assessed by the intraclass correlation coefficient (ICC), mean absolute difference (MAD), and root mean square (RMS) compared to the reference standard. Ninety-five percent limits of agreement (95% LoA) were calculated pairwise for each radiologist, reference standard, and model.ResultsCompared with the reference standard, U-Net showed good performance for predicting SA, CA, PFR, and LPT, with ICC = 0.85–0.97, MAD = 0.06–5.09, and RMS = 0.09–6.90 in the hold-out test set. Except for the PFR, the remaining parameters measured between the reference standard and the model were within the 95% LoA in the hold-out test dataset.ConclusionsThe U-Net-based deep learning approach had a relatively high model performance in automatically measuring SA, CA, PFR, and LPT.Key Points • The U-Net model could be used to segment the landmarks of the PFJ and calculate the SA, CA, PFR, and LPT, which could be used to evaluate the patellar instability. • In the hold-out test, the automatic measurement model yielded comparable performance with reference standard. • The automatic measurement model could still accurately predict SA, CA, PFR, and LPT in patients with PI and/or PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuleitao完成签到,获得积分10
3秒前
3秒前
4秒前
鱼鱼鱼完成签到,获得积分10
5秒前
王子发布了新的文献求助10
6秒前
zorro3574发布了新的文献求助10
7秒前
简墨完成签到,获得积分10
8秒前
机灵的灵煌完成签到,获得积分10
14秒前
CodeCraft应助小沫采纳,获得10
15秒前
orixero应助七七七氟烷采纳,获得30
17秒前
打打应助念姬采纳,获得10
18秒前
刘泽璇完成签到 ,获得积分10
19秒前
Wxxxxx完成签到 ,获得积分10
19秒前
咕咕发布了新的文献求助10
20秒前
chengzhang完成签到,获得积分10
21秒前
LHR发布了新的文献求助10
25秒前
25秒前
lzh353512377完成签到,获得积分10
25秒前
ab发布了新的文献求助10
26秒前
白菜包子完成签到 ,获得积分10
27秒前
28秒前
30秒前
淡淡博发布了新的文献求助10
31秒前
wuta发布了新的文献求助10
33秒前
小沫发布了新的文献求助10
33秒前
36秒前
36秒前
英俊的铭应助科研通管家采纳,获得10
38秒前
领导范儿应助科研通管家采纳,获得10
38秒前
Orange应助科研通管家采纳,获得10
38秒前
打打应助科研通管家采纳,获得10
38秒前
隐形曼青应助科研通管家采纳,获得10
38秒前
搜集达人应助科研通管家采纳,获得50
38秒前
8R60d8应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
猪猪hero应助科研通管家采纳,获得10
38秒前
猪猪hero应助科研通管家采纳,获得10
38秒前
今后应助科研通管家采纳,获得30
38秒前
8R60d8应助科研通管家采纳,获得10
38秒前
斯文败类应助科研通管家采纳,获得10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962917
求助须知:如何正确求助?哪些是违规求助? 3508861
关于积分的说明 11143755
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791689
邀请新用户注册赠送积分活动 873065
科研通“疑难数据库(出版商)”最低求助积分说明 803579