亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic measurement of the patellofemoral joint parameters in the Laurin view: a deep learning–based approach

组内相关 人工智能 试验装置 标准差 相关系数 统计 数学 计算机科学 再现性
作者
E Tuya,Rile Nai,Xiang Liu,Cen Wang,Jing Liu,Shijia Li,Jiahao Huang,Junhua Yu,Yaofeng Zhang,Weipeng Liu,Xiaodong Zhang,Xiaoying Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 566-577 被引量:5
标识
DOI:10.1007/s00330-022-08967-1
摘要

ObjectivesTo explore the performance of a deep learning–based algorithm for automatic patellofemoral joint (PFJ) parameter measurements from the Laurin view.MethodsA total of 1431 consecutive Laurin views of the PFJ were retrospectively collected and divided into two parts: (1) the model development dataset (dataset 1, n = 1230) and (2) the hold-out test set (dataset 2, n = 201). Dataset 1 was used to develop the U-shaped fully convolutional network (U-Net) model to segment the landmarks of the PFJ. Based on the predicted landmarks, the PFJ parameters were calculated, including the sulcus angle (SA), congruence angle (CA), patellofemoral ratio (PFR), and lateral patellar tilt (LPT). Dataset 2 was used to assess the model performance. The mean of three radiologists who independently measured the PFJ parameters was defined as the reference standard. Model performance was assessed by the intraclass correlation coefficient (ICC), mean absolute difference (MAD), and root mean square (RMS) compared to the reference standard. Ninety-five percent limits of agreement (95% LoA) were calculated pairwise for each radiologist, reference standard, and model.ResultsCompared with the reference standard, U-Net showed good performance for predicting SA, CA, PFR, and LPT, with ICC = 0.85–0.97, MAD = 0.06–5.09, and RMS = 0.09–6.90 in the hold-out test set. Except for the PFR, the remaining parameters measured between the reference standard and the model were within the 95% LoA in the hold-out test dataset.ConclusionsThe U-Net-based deep learning approach had a relatively high model performance in automatically measuring SA, CA, PFR, and LPT.Key Points • The U-Net model could be used to segment the landmarks of the PFJ and calculate the SA, CA, PFR, and LPT, which could be used to evaluate the patellar instability. • In the hold-out test, the automatic measurement model yielded comparable performance with reference standard. • The automatic measurement model could still accurately predict SA, CA, PFR, and LPT in patients with PI and/or PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
美丽的寻绿完成签到,获得积分10
1秒前
1秒前
yo一天完成签到 ,获得积分10
3秒前
10秒前
dorothy发布了新的文献求助200
10秒前
24秒前
27秒前
31秒前
小艾完成签到 ,获得积分10
34秒前
xwwx完成签到 ,获得积分10
36秒前
36秒前
36秒前
39秒前
41秒前
微风正好发布了新的文献求助10
41秒前
tdtk发布了新的文献求助10
42秒前
something发布了新的文献求助10
42秒前
小马甲应助tend采纳,获得10
47秒前
cy完成签到 ,获得积分10
51秒前
Lalala发布了新的文献求助20
51秒前
高级牛马完成签到 ,获得积分10
52秒前
JamesPei应助tdtk采纳,获得10
53秒前
wop111应助科研通管家采纳,获得20
55秒前
爆米花应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
小二郎应助科研通管家采纳,获得10
55秒前
浮浮世世应助科研通管家采纳,获得30
55秒前
1分钟前
lixiniverson完成签到 ,获得积分0
1分钟前
天天快乐应助炙热的渊思采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
w。发布了新的文献求助10
1分钟前
1分钟前
1分钟前
完美世界应助w。采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490