Automatic measurement of the patellofemoral joint parameters in the Laurin view: a deep learning–based approach

组内相关 人工智能 试验装置 标准差 相关系数 统计 数学 计算机科学 再现性
作者
E Tuya,Rile Nai,Xiang Liu,Cen Wang,Haibo Liu,Shijia Li,Jiahao Huang,Junhua Yu,Yaofeng Zhang,Weipeng Liu,Xiaodong Zhang,Xiaoying Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 566-577 被引量:5
标识
DOI:10.1007/s00330-022-08967-1
摘要

ObjectivesTo explore the performance of a deep learning–based algorithm for automatic patellofemoral joint (PFJ) parameter measurements from the Laurin view.MethodsA total of 1431 consecutive Laurin views of the PFJ were retrospectively collected and divided into two parts: (1) the model development dataset (dataset 1, n = 1230) and (2) the hold-out test set (dataset 2, n = 201). Dataset 1 was used to develop the U-shaped fully convolutional network (U-Net) model to segment the landmarks of the PFJ. Based on the predicted landmarks, the PFJ parameters were calculated, including the sulcus angle (SA), congruence angle (CA), patellofemoral ratio (PFR), and lateral patellar tilt (LPT). Dataset 2 was used to assess the model performance. The mean of three radiologists who independently measured the PFJ parameters was defined as the reference standard. Model performance was assessed by the intraclass correlation coefficient (ICC), mean absolute difference (MAD), and root mean square (RMS) compared to the reference standard. Ninety-five percent limits of agreement (95% LoA) were calculated pairwise for each radiologist, reference standard, and model.ResultsCompared with the reference standard, U-Net showed good performance for predicting SA, CA, PFR, and LPT, with ICC = 0.85–0.97, MAD = 0.06–5.09, and RMS = 0.09–6.90 in the hold-out test set. Except for the PFR, the remaining parameters measured between the reference standard and the model were within the 95% LoA in the hold-out test dataset.ConclusionsThe U-Net-based deep learning approach had a relatively high model performance in automatically measuring SA, CA, PFR, and LPT.Key Points • The U-Net model could be used to segment the landmarks of the PFJ and calculate the SA, CA, PFR, and LPT, which could be used to evaluate the patellar instability. • In the hold-out test, the automatic measurement model yielded comparable performance with reference standard. • The automatic measurement model could still accurately predict SA, CA, PFR, and LPT in patients with PI and/or PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腿毛没啦完成签到,获得积分10
刚刚
Ava应助你好吗采纳,获得10
1秒前
1秒前
买了束花完成签到,获得积分10
2秒前
英姑应助勤奋新晴采纳,获得10
2秒前
文欣完成签到 ,获得积分10
2秒前
Noah完成签到 ,获得积分10
3秒前
Davidfly20完成签到,获得积分10
5秒前
我是老大应助ddffgz采纳,获得10
5秒前
执着静竹完成签到,获得积分10
5秒前
南枝完成签到,获得积分10
5秒前
宝海青完成签到,获得积分10
5秒前
呼延炳发布了新的文献求助10
5秒前
yoyo完成签到,获得积分10
6秒前
7秒前
酷酷麦片完成签到 ,获得积分10
7秒前
sss完成签到,获得积分10
7秒前
852应助买了束花采纳,获得10
8秒前
8秒前
虚幻的凤完成签到,获得积分10
9秒前
李爱国应助Saranaaa采纳,获得30
9秒前
besatified发布了新的文献求助10
10秒前
11秒前
JamesPei应助1111111111111采纳,获得10
11秒前
迷人的小土豆完成签到,获得积分10
12秒前
信封完成签到 ,获得积分10
12秒前
宝海青发布了新的文献求助10
12秒前
kmzzy完成签到,获得积分10
14秒前
右旋王小二完成签到,获得积分10
14秒前
16秒前
17秒前
ossantu完成签到,获得积分10
17秒前
17秒前
疗伤烧肉粽完成签到,获得积分10
17秒前
无情的匪完成签到 ,获得积分10
17秒前
虚拟的绫完成签到,获得积分10
18秒前
zheyu发布了新的文献求助10
18秒前
nini可可味完成签到,获得积分10
19秒前
体贴向珊完成签到,获得积分10
20秒前
上官若男应助xfc采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099850
求助须知:如何正确求助?哪些是违规求助? 2751315
关于积分的说明 7612736
捐赠科研通 2403282
什么是DOI,文献DOI怎么找? 1275200
科研通“疑难数据库(出版商)”最低求助积分说明 616310
版权声明 599053