清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic measurement of the patellofemoral joint parameters in the Laurin view: a deep learning–based approach

组内相关 人工智能 试验装置 标准差 相关系数 统计 数学 计算机科学 再现性
作者
E Tuya,Rile Nai,Xiang Liu,Cen Wang,Jing Liu,Shijia Li,Jiahao Huang,Junhua Yu,Yaofeng Zhang,Weipeng Liu,Xiaodong Zhang,Xiaoying Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 566-577 被引量:5
标识
DOI:10.1007/s00330-022-08967-1
摘要

ObjectivesTo explore the performance of a deep learning–based algorithm for automatic patellofemoral joint (PFJ) parameter measurements from the Laurin view.MethodsA total of 1431 consecutive Laurin views of the PFJ were retrospectively collected and divided into two parts: (1) the model development dataset (dataset 1, n = 1230) and (2) the hold-out test set (dataset 2, n = 201). Dataset 1 was used to develop the U-shaped fully convolutional network (U-Net) model to segment the landmarks of the PFJ. Based on the predicted landmarks, the PFJ parameters were calculated, including the sulcus angle (SA), congruence angle (CA), patellofemoral ratio (PFR), and lateral patellar tilt (LPT). Dataset 2 was used to assess the model performance. The mean of three radiologists who independently measured the PFJ parameters was defined as the reference standard. Model performance was assessed by the intraclass correlation coefficient (ICC), mean absolute difference (MAD), and root mean square (RMS) compared to the reference standard. Ninety-five percent limits of agreement (95% LoA) were calculated pairwise for each radiologist, reference standard, and model.ResultsCompared with the reference standard, U-Net showed good performance for predicting SA, CA, PFR, and LPT, with ICC = 0.85–0.97, MAD = 0.06–5.09, and RMS = 0.09–6.90 in the hold-out test set. Except for the PFR, the remaining parameters measured between the reference standard and the model were within the 95% LoA in the hold-out test dataset.ConclusionsThe U-Net-based deep learning approach had a relatively high model performance in automatically measuring SA, CA, PFR, and LPT.Key Points • The U-Net model could be used to segment the landmarks of the PFJ and calculate the SA, CA, PFR, and LPT, which could be used to evaluate the patellar instability. • In the hold-out test, the automatic measurement model yielded comparable performance with reference standard. • The automatic measurement model could still accurately predict SA, CA, PFR, and LPT in patients with PI and/or PFOA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是笨蛋完成签到 ,获得积分10
1秒前
sysi完成签到 ,获得积分10
3秒前
笑点低小熊猫完成签到,获得积分10
17秒前
25秒前
贰壹完成签到 ,获得积分10
27秒前
RJ发布了新的文献求助10
28秒前
中華人民共和完成签到,获得积分10
38秒前
林利芳完成签到 ,获得积分0
1分钟前
qin202569完成签到,获得积分10
1分钟前
微解感染完成签到,获得积分10
1分钟前
龙腾岁月完成签到 ,获得积分10
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
2分钟前
苒洳完成签到 ,获得积分10
3分钟前
酷然完成签到,获得积分10
3分钟前
zjz发布了新的文献求助10
3分钟前
qin完成签到 ,获得积分10
3分钟前
充电宝应助Senase采纳,获得10
3分钟前
慕青应助雪白的青柏采纳,获得10
3分钟前
王波完成签到 ,获得积分10
3分钟前
3分钟前
herpes完成签到 ,获得积分0
3分钟前
4分钟前
4分钟前
4分钟前
家的温暖完成签到,获得积分10
4分钟前
Senase发布了新的文献求助10
4分钟前
kmzzy完成签到,获得积分10
4分钟前
4分钟前
chcmy完成签到 ,获得积分0
4分钟前
balko完成签到,获得积分10
4分钟前
Karl完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
jlwang完成签到,获得积分10
5分钟前
gyx完成签到 ,获得积分10
5分钟前
zjz完成签到,获得积分10
5分钟前
小亮完成签到 ,获得积分10
5分钟前
大模型应助yf采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651202
求助须知:如何正确求助?哪些是违规求助? 4783941
关于积分的说明 15053329
捐赠科研通 4809919
什么是DOI,文献DOI怎么找? 2572803
邀请新用户注册赠送积分活动 1528714
关于科研通互助平台的介绍 1487747