亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic measurement of the patellofemoral joint parameters in the Laurin view: a deep learning–based approach

组内相关 人工智能 试验装置 标准差 相关系数 统计 数学 计算机科学 再现性
作者
E Tuya,Rile Nai,Xiang Liu,Cen Wang,Jing Liu,Shijia Li,Jiahao Huang,Junhua Yu,Yaofeng Zhang,Weipeng Liu,Xiaodong Zhang,Xiaoying Wang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (1): 566-577 被引量:5
标识
DOI:10.1007/s00330-022-08967-1
摘要

ObjectivesTo explore the performance of a deep learning–based algorithm for automatic patellofemoral joint (PFJ) parameter measurements from the Laurin view.MethodsA total of 1431 consecutive Laurin views of the PFJ were retrospectively collected and divided into two parts: (1) the model development dataset (dataset 1, n = 1230) and (2) the hold-out test set (dataset 2, n = 201). Dataset 1 was used to develop the U-shaped fully convolutional network (U-Net) model to segment the landmarks of the PFJ. Based on the predicted landmarks, the PFJ parameters were calculated, including the sulcus angle (SA), congruence angle (CA), patellofemoral ratio (PFR), and lateral patellar tilt (LPT). Dataset 2 was used to assess the model performance. The mean of three radiologists who independently measured the PFJ parameters was defined as the reference standard. Model performance was assessed by the intraclass correlation coefficient (ICC), mean absolute difference (MAD), and root mean square (RMS) compared to the reference standard. Ninety-five percent limits of agreement (95% LoA) were calculated pairwise for each radiologist, reference standard, and model.ResultsCompared with the reference standard, U-Net showed good performance for predicting SA, CA, PFR, and LPT, with ICC = 0.85–0.97, MAD = 0.06–5.09, and RMS = 0.09–6.90 in the hold-out test set. Except for the PFR, the remaining parameters measured between the reference standard and the model were within the 95% LoA in the hold-out test dataset.ConclusionsThe U-Net-based deep learning approach had a relatively high model performance in automatically measuring SA, CA, PFR, and LPT.Key Points • The U-Net model could be used to segment the landmarks of the PFJ and calculate the SA, CA, PFR, and LPT, which could be used to evaluate the patellar instability. • In the hold-out test, the automatic measurement model yielded comparable performance with reference standard. • The automatic measurement model could still accurately predict SA, CA, PFR, and LPT in patients with PI and/or PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱宣诚发布了新的文献求助10
19秒前
19秒前
科研通AI6应助无误采纳,获得10
26秒前
乔一一发布了新的文献求助10
26秒前
学生信的大叔完成签到,获得积分10
36秒前
37秒前
hkx完成签到,获得积分10
38秒前
Ava应助袁青寒采纳,获得10
46秒前
1分钟前
王圆圆完成签到 ,获得积分10
1分钟前
胡一一发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助袁青寒采纳,获得10
1分钟前
1分钟前
胡一一完成签到,获得积分10
1分钟前
1分钟前
无误发布了新的文献求助10
1分钟前
袁青寒完成签到,获得积分10
1分钟前
搜集达人应助tylerli采纳,获得10
1分钟前
1分钟前
水合电子发布了新的文献求助10
1分钟前
welcome应助温暖的夏波采纳,获得10
1分钟前
Carsen完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助无误采纳,获得10
1分钟前
tylerli发布了新的文献求助10
1分钟前
1分钟前
袁青寒发布了新的文献求助10
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
爆米花应助朱宣诚采纳,获得10
2分钟前
2分钟前
GPTea完成签到,获得积分0
2分钟前
无误完成签到,获得积分10
2分钟前
活泼的面包完成签到 ,获得积分10
2分钟前
无误发布了新的文献求助10
2分钟前
2分钟前
朱宣诚发布了新的文献求助10
2分钟前
3分钟前
significant完成签到,获得积分10
3分钟前
水合电子完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4945112
求助须知:如何正确求助?哪些是违规求助? 4209703
关于积分的说明 13085822
捐赠科研通 3989760
什么是DOI,文献DOI怎么找? 2184311
邀请新用户注册赠送积分活动 1199617
关于科研通互助平台的介绍 1112885