TrojanFlow: A Neural Backdoor Attack to Deep Learning-based Network Traffic Classifiers

后门 计算机科学 人工智能 人工神经网络 机器学习 深度学习 深层神经网络 计算机安全
作者
Rui Ning,Chunsheng Xin,Hongyi Wu
标识
DOI:10.1109/infocom48880.2022.9796878
摘要

While deep learning (DL)-based network traffic classification has demonstrated its success in a range of practical applications, such as network management and security control to just name a few, it is vulnerable to adversarial attacks. This paper reports TrojanFlow, a new and practical neural backdoor attack to DL-based network traffic classifiers. In contrast to traditional neural backdoor attacks where a designated and sample-agnostic trigger is used to plant backdoor, TrojanFlow poisons a model using dynamic and sample-specific triggers that are optimized to efficiently hijack the model. It features a unique design to jointly optimize the trigger generator with the target classifier during training. The trigger generator can thus craft optimized triggers based on the input sample to efficiently manipulate the model's prediction. A well-engineered prototype is developed using Pytorch to demonstrate TrojanFlow attacking multiple practical DL-based network traffic classifiers. Thorough analysis is conducted to gain insights into the effectiveness of TrojanFlow, revealing the fundamentals of why it is effective and what it does to efficiently hijack the model. Extensive experiments are carried out on the well-known ISCXVPN2016 dataset with three widely adopted DL network traffic classifier architectures. TrojanFlow is compared with two other backdoor attacks under five state-of-the-art backdoor defenses. The results show that the TrojanFlow attack is stealthy, efficient, and highly robust against existing neural backdoor mitigation schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助qq采纳,获得10
2秒前
sam0522完成签到,获得积分10
3秒前
文静的海完成签到,获得积分10
3秒前
HWJ完成签到,获得积分10
4秒前
pliciyir完成签到 ,获得积分10
4秒前
山雀完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
lamitky发布了新的文献求助10
6秒前
hua完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
mao完成签到,获得积分10
7秒前
8秒前
9秒前
lyg完成签到,获得积分10
10秒前
mlzhan发布了新的文献求助10
10秒前
语行完成签到,获得积分10
10秒前
11秒前
嘤嘤怪啊完成签到 ,获得积分10
11秒前
888关闭了888文献求助
11秒前
11秒前
顾矜应助NicotineZen采纳,获得10
12秒前
曾阿牛发布了新的文献求助10
13秒前
hdh发布了新的文献求助10
13秒前
13秒前
13秒前
小饶发布了新的文献求助10
14秒前
可爱的函函应助生动路人采纳,获得10
15秒前
16秒前
希望天下0贩的0应助lamitky采纳,获得10
16秒前
ceeray23应助一一采纳,获得10
17秒前
uu应助xuhongfei采纳,获得20
17秒前
枪手发布了新的文献求助10
17秒前
雪白凌翠发布了新的文献求助10
20秒前
美梦成真完成签到 ,获得积分10
21秒前
woodenfish发布了新的文献求助20
21秒前
一袋星光完成签到 ,获得积分10
21秒前
邱邱完成签到,获得积分20
21秒前
沉默是金发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088946
求助须知:如何正确求助?哪些是违规求助? 4303807
关于积分的说明 13412545
捐赠科研通 4129492
什么是DOI,文献DOI怎么找? 2261479
邀请新用户注册赠送积分活动 1265554
关于科研通互助平台的介绍 1200181