TrojanFlow: A Neural Backdoor Attack to Deep Learning-based Network Traffic Classifiers

后门 计算机科学 人工智能 人工神经网络 机器学习 深度学习 深层神经网络 计算机安全
作者
Rui Ning,Chunsheng Xin,Hongyi Wu
标识
DOI:10.1109/infocom48880.2022.9796878
摘要

While deep learning (DL)-based network traffic classification has demonstrated its success in a range of practical applications, such as network management and security control to just name a few, it is vulnerable to adversarial attacks. This paper reports TrojanFlow, a new and practical neural backdoor attack to DL-based network traffic classifiers. In contrast to traditional neural backdoor attacks where a designated and sample-agnostic trigger is used to plant backdoor, TrojanFlow poisons a model using dynamic and sample-specific triggers that are optimized to efficiently hijack the model. It features a unique design to jointly optimize the trigger generator with the target classifier during training. The trigger generator can thus craft optimized triggers based on the input sample to efficiently manipulate the model's prediction. A well-engineered prototype is developed using Pytorch to demonstrate TrojanFlow attacking multiple practical DL-based network traffic classifiers. Thorough analysis is conducted to gain insights into the effectiveness of TrojanFlow, revealing the fundamentals of why it is effective and what it does to efficiently hijack the model. Extensive experiments are carried out on the well-known ISCXVPN2016 dataset with three widely adopted DL network traffic classifier architectures. TrojanFlow is compared with two other backdoor attacks under five state-of-the-art backdoor defenses. The results show that the TrojanFlow attack is stealthy, efficient, and highly robust against existing neural backdoor mitigation schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄大雁发布了新的文献求助20
刚刚
虚幻的不评完成签到,获得积分10
刚刚
刚刚
1秒前
CipherSage应助冷静惜文采纳,获得10
2秒前
2秒前
6秒前
6秒前
科研通AI2S应助野原采纳,获得10
7秒前
tutulunzi完成签到,获得积分10
7秒前
8秒前
无私小小完成签到,获得积分10
9秒前
小叶发布了新的文献求助10
9秒前
jar7989发布了新的文献求助10
11秒前
金玉王其完成签到,获得积分10
12秒前
无花果应助treelet007采纳,获得10
15秒前
17秒前
jar7989完成签到,获得积分20
18秒前
小遇完成签到 ,获得积分10
19秒前
JunJun完成签到 ,获得积分10
21秒前
冷静惜文发布了新的文献求助10
21秒前
xt完成签到,获得积分10
21秒前
25秒前
星辰大海应助dablack采纳,获得10
25秒前
Felix完成签到 ,获得积分10
26秒前
畅快访旋完成签到,获得积分10
29秒前
1122发布了新的文献求助10
30秒前
zz完成签到,获得积分10
32秒前
zhzssaijj完成签到,获得积分10
35秒前
36秒前
Z123发布了新的文献求助10
37秒前
haonanchen完成签到,获得积分10
38秒前
完美世界应助冷静惜文采纳,获得10
39秒前
NN完成签到 ,获得积分10
39秒前
40秒前
无名老大应助NN采纳,获得30
41秒前
41秒前
CA完成签到,获得积分10
42秒前
一包辣条完成签到,获得积分10
43秒前
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359441
求助须知:如何正确求助?哪些是违规求助? 2982264
关于积分的说明 8702712
捐赠科研通 2663862
什么是DOI,文献DOI怎么找? 1458686
科研通“疑难数据库(出版商)”最低求助积分说明 675236
邀请新用户注册赠送积分活动 666300