TrojanFlow: A Neural Backdoor Attack to Deep Learning-based Network Traffic Classifiers

后门 计算机科学 人工智能 人工神经网络 机器学习 深度学习 深层神经网络 计算机安全
作者
Rui Ning,Chunsheng Xin,Hongyi Wu
标识
DOI:10.1109/infocom48880.2022.9796878
摘要

While deep learning (DL)-based network traffic classification has demonstrated its success in a range of practical applications, such as network management and security control to just name a few, it is vulnerable to adversarial attacks. This paper reports TrojanFlow, a new and practical neural backdoor attack to DL-based network traffic classifiers. In contrast to traditional neural backdoor attacks where a designated and sample-agnostic trigger is used to plant backdoor, TrojanFlow poisons a model using dynamic and sample-specific triggers that are optimized to efficiently hijack the model. It features a unique design to jointly optimize the trigger generator with the target classifier during training. The trigger generator can thus craft optimized triggers based on the input sample to efficiently manipulate the model's prediction. A well-engineered prototype is developed using Pytorch to demonstrate TrojanFlow attacking multiple practical DL-based network traffic classifiers. Thorough analysis is conducted to gain insights into the effectiveness of TrojanFlow, revealing the fundamentals of why it is effective and what it does to efficiently hijack the model. Extensive experiments are carried out on the well-known ISCXVPN2016 dataset with three widely adopted DL network traffic classifier architectures. TrojanFlow is compared with two other backdoor attacks under five state-of-the-art backdoor defenses. The results show that the TrojanFlow attack is stealthy, efficient, and highly robust against existing neural backdoor mitigation schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
lyxxll完成签到 ,获得积分10
刚刚
赘婿应助qu采纳,获得10
刚刚
1秒前
1秒前
1秒前
寻道图强应助YY采纳,获得30
2秒前
羊羊羊发布了新的文献求助10
3秒前
4秒前
南辞完成签到 ,获得积分20
5秒前
大大发布了新的文献求助30
5秒前
lucky完成签到,获得积分10
5秒前
5秒前
Sunny完成签到,获得积分10
6秒前
8秒前
8秒前
科目三应助一百度黑采纳,获得10
8秒前
8秒前
椰椰完成签到,获得积分10
9秒前
沉默襄发布了新的文献求助10
9秒前
Xiaopan完成签到 ,获得积分10
11秒前
开朗紫完成签到,获得积分10
11秒前
迪迦王完成签到,获得积分10
11秒前
大模型应助edtaa采纳,获得10
13秒前
unique发布了新的文献求助10
13秒前
13秒前
13秒前
随随发布了新的文献求助10
14秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
buqi发布了新的文献求助10
18秒前
FFFFFF发布了新的文献求助10
18秒前
一百度黑完成签到,获得积分10
19秒前
kdjc完成签到,获得积分10
20秒前
HF发布了新的文献求助10
20秒前
普鲁斯特完成签到,获得积分10
22秒前
赵十一完成签到,获得积分10
23秒前
今后应助我真的不是robot采纳,获得10
24秒前
自觉的绮烟完成签到,获得积分10
24秒前
24秒前
11发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385