Detection of MET amplification by droplet digital PCR in peripheral blood samples of non-small cell lung cancer

肺癌 T790米 数字聚合酶链反应 医学 表皮生长因子受体 内科学 病理 肿瘤科 癌症 生物 聚合酶链反应 吉非替尼 基因 生物化学
作者
Ying Fan,Rui Sun,Zhizhong Wang,Yuying Zhang,Xiao Xiao,Yizhe Liu,Beibei Xin,Hongchun Xiong,Daru Lu,Jie Ma
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:149 (5): 1667-1677 被引量:11
标识
DOI:10.1007/s00432-022-04048-4
摘要

PurposeMesenchymal–epithelial transition (MET) amplification is one of the mechanisms accounting for the resistance of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in lung cancer patients, as well as the poor prognosis. Fluorescence in situ hybridization (FISH) is the most widely used method for MET amplification detection. However, it is inapplicable when tissue samples were unavailable. Herein, we assessed the value of droplet digital PCR (ddPCR) in MET copy number gain (CNG) detection in non-small cell lung cancer (NSCLC) patients treated with EGFR-TKIs.Materials and methodsA total of 103 cancer tissues and the paired peripheral blood samples from NSCLC patients were collected for MET CNG detection using ddPCR. In parallel, MET amplification in tissue samples was verified by FISH. Also, the relationships between MET CNG and EGFR T790M, as well as the EGFR-TKI resistance were also evaluated using Chi-square or Fisher’s exact tests.ResultThe concordance rate of ddPCR and FISH in detecting MET CNG in tissue samples was 100% (102/102), and it was 94.17% (97/103) for ddPCR method in detecting the MET CNG among peripheral blood and tissue samples. No statistical difference was observed between MET amplification and EGFR T790M (p = 0.65), while MET amplification rate was significantly increased in patients with resistance to third generations of EGFR-TKIs as compared with patients with resistance to first/second EGFR-TKIs (p < 0.05).ConclusionsddPCR is an alternative method to detect MET CNG in both tissues and peripheral blood samples, which is of worthy in clinical promotion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得30
1秒前
sutharsons应助科研通管家采纳,获得30
1秒前
归海含烟完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
shire应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
RC_Wang应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
匹诺曹发布了新的文献求助10
2秒前
唐画完成签到 ,获得积分10
2秒前
2秒前
2秒前
淡淡采白关注了科研通微信公众号
3秒前
tY完成签到,获得积分20
3秒前
傲娇的凡旋应助卢健辉采纳,获得10
4秒前
CodeCraft应助calbee采纳,获得10
4秒前
6秒前
6秒前
sw98318完成签到,获得积分10
7秒前
impala完成签到,获得积分10
7秒前
7秒前
欣喜访旋发布了新的文献求助10
7秒前
朱江涛完成签到 ,获得积分10
8秒前
角鸮完成签到,获得积分10
8秒前
zly完成签到 ,获得积分10
9秒前
雨霧雲完成签到,获得积分10
9秒前
qnqqq完成签到 ,获得积分10
10秒前
健壮的涑发布了新的文献求助10
10秒前
11秒前
11秒前
秋山伊夫完成签到,获得积分10
11秒前
入门的橙橙完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808