A safe driving speed prediction method for the Hong Kong-Zhuhai-Macao bridge based on genetic algorithm and BP neural network

风速 桥(图论) 速度限制 人工神经网络 遗传算法 计算机科学 电子速度控制 流量(计算机网络) 工程类 模拟 运输工程 人工智能 气象学 机器学习 物理 内科学 电气工程 医学 计算机安全
作者
Dong Qiu,Xiang Chen
标识
DOI:10.1117/12.2638730
摘要

The Hong Kong-Zhuhai-Macao Bridge, as the world's most up-to-date cross-sea bridge, spans the Lingdingyang sea, and traffic is easily affected by typhoons, heavy rain and other weather conditions. Besides, there are various road conditions such as tunnels and turning overpasses on the bridge. With the increase of traffic flow, it is important to control the speed of the bridge through traffic for the safe driving of vehicles. The purpose of this paper is to design a vehicle driving speed model to calculate the safe driving strategy on the Hong Kong-Zhuhai-Macao Bridge based on the bridge design. Two models are established in this paper: Model Ⅰ: Curve driving speed model based on cars of different masses; Model Ⅱ: Safe driving speed model based on cars under the influence of different typhoon wind directions. For model Ⅰ, this paper gets the theoretical driving speed of the car through the physical force analysis of the car and the linear speed prediction model of the flat and longitudinal combination. For model Ⅱ, this paper predicts the maximum safe speed of the car through genetic algorithm and BP neural network with the input vehicle type, road curvature parameters and car entry speed, and gets the safe speed of the car under different wind levels by combining with wind model. Finally, an AHP model is established by combining different condition factors with the car-following model, and the capacity of the bridge is considered comprehensively to find out the duration of motor vehicles passing the bridge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dou完成签到,获得积分10
刚刚
白泯完成签到,获得积分10
1秒前
1ssd发布了新的文献求助10
1秒前
667发布了新的文献求助10
1秒前
小二郎应助辰柒采纳,获得10
2秒前
3秒前
3秒前
clear完成签到,获得积分20
3秒前
3秒前
orixero应助congguitar采纳,获得10
3秒前
Evan完成签到,获得积分10
3秒前
YANG发布了新的文献求助10
4秒前
4秒前
123发布了新的文献求助10
4秒前
sunzhiyu233发布了新的文献求助10
5秒前
Raul完成签到 ,获得积分10
5秒前
5秒前
伯尔尼圆白菜完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
buuyoo完成签到,获得积分10
6秒前
科研通AI5应助魏煜佳采纳,获得10
6秒前
LLxiaolong完成签到,获得积分10
6秒前
7秒前
7秒前
巨噬细胞A完成签到,获得积分10
7秒前
7秒前
我要读博士完成签到 ,获得积分10
7秒前
xxq完成签到,获得积分20
7秒前
福气小姐完成签到 ,获得积分10
7秒前
搜集达人应助jjy采纳,获得10
8秒前
8秒前
郑总完成签到,获得积分10
8秒前
CipherSage应助马尼拉采纳,获得10
8秒前
SCI完成签到 ,获得积分10
9秒前
10秒前
healer发布了新的文献求助10
10秒前
123完成签到,获得积分20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759