A safe driving speed prediction method for the Hong Kong-Zhuhai-Macao bridge based on genetic algorithm and BP neural network

风速 桥(图论) 速度限制 人工神经网络 遗传算法 计算机科学 电子速度控制 流量(计算机网络) 工程类 模拟 运输工程 人工智能 气象学 机器学习 医学 物理 电气工程 计算机安全 内科学
作者
Dong Qiu,Xiang Chen
标识
DOI:10.1117/12.2638730
摘要

The Hong Kong-Zhuhai-Macao Bridge, as the world's most up-to-date cross-sea bridge, spans the Lingdingyang sea, and traffic is easily affected by typhoons, heavy rain and other weather conditions. Besides, there are various road conditions such as tunnels and turning overpasses on the bridge. With the increase of traffic flow, it is important to control the speed of the bridge through traffic for the safe driving of vehicles. The purpose of this paper is to design a vehicle driving speed model to calculate the safe driving strategy on the Hong Kong-Zhuhai-Macao Bridge based on the bridge design. Two models are established in this paper: Model Ⅰ: Curve driving speed model based on cars of different masses; Model Ⅱ: Safe driving speed model based on cars under the influence of different typhoon wind directions. For model Ⅰ, this paper gets the theoretical driving speed of the car through the physical force analysis of the car and the linear speed prediction model of the flat and longitudinal combination. For model Ⅱ, this paper predicts the maximum safe speed of the car through genetic algorithm and BP neural network with the input vehicle type, road curvature parameters and car entry speed, and gets the safe speed of the car under different wind levels by combining with wind model. Finally, an AHP model is established by combining different condition factors with the car-following model, and the capacity of the bridge is considered comprehensively to find out the duration of motor vehicles passing the bridge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Nell采纳,获得10
刚刚
jie完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
丘比特应助水123采纳,获得10
2秒前
2秒前
桐桐应助zhiyuanren采纳,获得10
2秒前
2秒前
李绅语发布了新的文献求助10
2秒前
鳗鱼忆南发布了新的文献求助10
4秒前
syh完成签到,获得积分10
4秒前
现代菠萝发布了新的文献求助10
4秒前
6秒前
桐桐应助chrysan采纳,获得10
6秒前
eric发布了新的文献求助10
6秒前
麻喽发布了新的文献求助10
7秒前
科研通AI6应助LAYWL采纳,获得10
7秒前
7秒前
领导范儿应助张景峒采纳,获得10
7秒前
慕青应助zlf采纳,获得10
8秒前
闫辰完成签到 ,获得积分10
8秒前
latata完成签到,获得积分10
8秒前
8秒前
脑洞疼应助JY采纳,获得10
8秒前
666完成签到,获得积分10
8秒前
万能图书馆应助辛勤又蓝采纳,获得10
10秒前
Os发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Vivien完成签到,获得积分10
11秒前
11秒前
无限大山完成签到,获得积分10
11秒前
SciGPT应助谨慎的易蓉采纳,获得10
11秒前
pyh01完成签到,获得积分10
12秒前
大模型应助我谈采纳,获得10
13秒前
叶子发布了新的文献求助10
14秒前
麦子完成签到 ,获得积分10
15秒前
15秒前
15秒前
F7erxl完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593599
求助须知:如何正确求助?哪些是违规求助? 4679468
关于积分的说明 14810164
捐赠科研通 4644508
什么是DOI,文献DOI怎么找? 2534573
邀请新用户注册赠送积分活动 1502632
关于科研通互助平台的介绍 1469366