Development and validation of an automated planning tool for navigated lumbosacral pedicle screws using a convolutional neural network

卷积神经网络 医学 腰骶关节 手术计划 人工智能 计算机科学 放射科 外科
作者
Moritz Scherer,Lisa Kausch,Basem Ishak,Tobias Norajitra,Philipp Kickingereder,Karl Kiening,Andreas Unterberg,Klaus Maier‐Hein,Jan‐Oliver Neumann
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (10): 1666-1676 被引量:15
标识
DOI:10.1016/j.spinee.2022.05.002
摘要

Navigation and robotic systems have been increasingly applied to spinal instrumentation but dedicated screw planning is a time-consuming prerequisite to tap the full potential of these techniques.To develop and validate an automated planning tool for lumbosacral pedicle screw placement using a convolutional neural network (CNN) to facilitate the planning process.Retrospective analysis and processing of CT and screw planning data randomly selected from a consecutive registry of CT-navigated instrumentations from a single academic institution.Data from 179 cases was processed for CNN training and validation (155 for training, 24 for validation) leveraging a total of 1182 screws (1052 for training, 130 for validation).Quantitative and qualitative (Gertzbein-Robbins classification [GR]) validation via comparison of automatically and manually planned reference screws, inter-rater and intra-rater variability.Annotated data from CT-navigated instrumentation was used to train a CNN operating in a vertebra instance-based approach employing a state-of-the-art U-Net framework. Internal five-fold cross-validation and external validation on an independent cohort not previously involved in training was performed. Quantitative validation of automatically planned screws was performed in comparison to corresponding manually planned screws by calculating the minimal absolute difference (MAD) of screw head and tip points, length and diameter, screw direction and Dice coefficient. Results were evaluated in relation to inter-rater and intra-rater variability of manual screw planning.Automated screw planning was successful in all targeted 130 screws. Compared with manually planned screws as a reference, mean MAD of automatically planned screws was 4.61±2.27 mm for screw head, 3.96±2.19 mm for tip points and 5.51±3.64° for screw direction. These differences were either statistically comparable or significantly smaller when compared with interrater variability of manual screw planning (p>.99 for head point and direction, p=.004 for tip point, respectively). Mean Dice coefficient of 0.61±0.16 indicated significantly greater agreement of automatic screws with the manual reference compared with interrater agreement (Dice 0.56±0.18, p<.001). Automatically planned screws were marginally shorter (MAD 3.4±3.2 mm) and thinner (MAD mean 0.3±0.6 mm) compared with the manual reference, but with statistical significance (p<.0001, respectively). Automatically planned screws were GR grade A in 96.2% in qualitative validation. Planning time was significantly shorter with the automatic approach (0:41 min vs. 6:41 min, p<.0001).We derived and validated a fully automated planning tool for lumbosacral pedicle screws using a CNN. Our validation showed noninferiority to manual screw planning and provided sufficient accuracy to facilitate and expedite the screw planning process. These results offer a high potential to improve workflows in spine surgery when integrated into navigation or robotic assistance systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lynth_雪鸮发布了新的文献求助10
1秒前
1秒前
polki完成签到 ,获得积分10
2秒前
2秒前
JKH完成签到,获得积分10
3秒前
3秒前
泡泡泡芙发布了新的文献求助10
4秒前
zxd发布了新的文献求助10
4秒前
4秒前
嘿嘿呼发布了新的文献求助10
4秒前
Wlt完成签到,获得积分10
5秒前
研友_VZG7GZ应助李昕123采纳,获得10
6秒前
6秒前
蒋卉梅发布了新的文献求助10
6秒前
领导范儿应助甜甜的枫采纳,获得10
7秒前
千早爱音完成签到,获得积分10
7秒前
酷波er应助chc采纳,获得10
8秒前
NexusExplorer应助发的不太好采纳,获得10
8秒前
orixero应助冷彬采纳,获得10
9秒前
9秒前
yu发布了新的文献求助10
9秒前
常芹发布了新的文献求助10
10秒前
天天快乐应助嘿嘿呼采纳,获得10
11秒前
万能图书馆应助钱钱采纳,获得10
12秒前
机智毛豆发布了新的文献求助10
13秒前
季裕完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
WW发布了新的文献求助10
14秒前
15秒前
zxd完成签到,获得积分10
15秒前
Lynth_雪鸮发布了新的文献求助10
15秒前
收费完成签到 ,获得积分10
16秒前
orixero应助qq采纳,获得10
17秒前
Curiousrss完成签到,获得积分10
17秒前
李爱国应助ChuangyangLi采纳,获得10
17秒前
17秒前
18秒前
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672