Development and validation of an automated planning tool for navigated lumbosacral pedicle screws using a convolutional neural network

卷积神经网络 医学 腰骶关节 手术计划 人工智能 计算机科学 放射科 外科
作者
Moritz Scherer,Lisa Kausch,Basem Ishak,Tobias Norajitra,Philipp Kickingereder,Karl Kiening,Andreas Unterberg,Klaus Maier‐Hein,Jan‐Oliver Neumann
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (10): 1666-1676 被引量:15
标识
DOI:10.1016/j.spinee.2022.05.002
摘要

Navigation and robotic systems have been increasingly applied to spinal instrumentation but dedicated screw planning is a time-consuming prerequisite to tap the full potential of these techniques.To develop and validate an automated planning tool for lumbosacral pedicle screw placement using a convolutional neural network (CNN) to facilitate the planning process.Retrospective analysis and processing of CT and screw planning data randomly selected from a consecutive registry of CT-navigated instrumentations from a single academic institution.Data from 179 cases was processed for CNN training and validation (155 for training, 24 for validation) leveraging a total of 1182 screws (1052 for training, 130 for validation).Quantitative and qualitative (Gertzbein-Robbins classification [GR]) validation via comparison of automatically and manually planned reference screws, inter-rater and intra-rater variability.Annotated data from CT-navigated instrumentation was used to train a CNN operating in a vertebra instance-based approach employing a state-of-the-art U-Net framework. Internal five-fold cross-validation and external validation on an independent cohort not previously involved in training was performed. Quantitative validation of automatically planned screws was performed in comparison to corresponding manually planned screws by calculating the minimal absolute difference (MAD) of screw head and tip points, length and diameter, screw direction and Dice coefficient. Results were evaluated in relation to inter-rater and intra-rater variability of manual screw planning.Automated screw planning was successful in all targeted 130 screws. Compared with manually planned screws as a reference, mean MAD of automatically planned screws was 4.61±2.27 mm for screw head, 3.96±2.19 mm for tip points and 5.51±3.64° for screw direction. These differences were either statistically comparable or significantly smaller when compared with interrater variability of manual screw planning (p>.99 for head point and direction, p=.004 for tip point, respectively). Mean Dice coefficient of 0.61±0.16 indicated significantly greater agreement of automatic screws with the manual reference compared with interrater agreement (Dice 0.56±0.18, p<.001). Automatically planned screws were marginally shorter (MAD 3.4±3.2 mm) and thinner (MAD mean 0.3±0.6 mm) compared with the manual reference, but with statistical significance (p<.0001, respectively). Automatically planned screws were GR grade A in 96.2% in qualitative validation. Planning time was significantly shorter with the automatic approach (0:41 min vs. 6:41 min, p<.0001).We derived and validated a fully automated planning tool for lumbosacral pedicle screws using a CNN. Our validation showed noninferiority to manual screw planning and provided sufficient accuracy to facilitate and expedite the screw planning process. These results offer a high potential to improve workflows in spine surgery when integrated into navigation or robotic assistance systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的尔风完成签到 ,获得积分10
1秒前
ding应助guard采纳,获得150
1秒前
2秒前
Joanne完成签到 ,获得积分10
3秒前
浮游应助瘦瘦的雨莲采纳,获得10
3秒前
4秒前
4秒前
蛙蛙完成签到 ,获得积分10
5秒前
luowenbo发布了新的文献求助10
7秒前
活力完成签到,获得积分10
8秒前
悦耳的谷芹完成签到 ,获得积分10
8秒前
9秒前
ilmiss完成签到,获得积分10
9秒前
llw发布了新的文献求助10
10秒前
YFL完成签到,获得积分10
10秒前
10秒前
kk_yang完成签到,获得积分10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
12秒前
思源应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
13秒前
wwz应助科研通管家采纳,获得10
13秒前
13秒前
Hello应助科研通管家采纳,获得10
13秒前
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
向阳发布了新的文献求助10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得20
13秒前
zcl应助科研通管家采纳,获得150
13秒前
wwz应助科研通管家采纳,获得10
13秒前
chenqiumu应助科研通管家采纳,获得30
13秒前
Ankher应助科研通管家采纳,获得30
13秒前
Ankher应助科研通管家采纳,获得30
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074