Development and validation of an automated planning tool for navigated lumbosacral pedicle screws using a convolutional neural network

卷积神经网络 医学 腰骶关节 手术计划 人工智能 计算机科学 放射科 外科
作者
Moritz Scherer,Lisa Kausch,Basem Ishak,Tobias Norajitra,Philipp Kickingereder,Karl Kiening,Andreas Unterberg,Klaus Maier‐Hein,Jan‐Oliver Neumann
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:22 (10): 1666-1676 被引量:11
标识
DOI:10.1016/j.spinee.2022.05.002
摘要

Navigation and robotic systems have been increasingly applied to spinal instrumentation but dedicated screw planning is a time-consuming prerequisite to tap the full potential of these techniques.To develop and validate an automated planning tool for lumbosacral pedicle screw placement using a convolutional neural network (CNN) to facilitate the planning process.Retrospective analysis and processing of CT and screw planning data randomly selected from a consecutive registry of CT-navigated instrumentations from a single academic institution.Data from 179 cases was processed for CNN training and validation (155 for training, 24 for validation) leveraging a total of 1182 screws (1052 for training, 130 for validation).Quantitative and qualitative (Gertzbein-Robbins classification [GR]) validation via comparison of automatically and manually planned reference screws, inter-rater and intra-rater variability.Annotated data from CT-navigated instrumentation was used to train a CNN operating in a vertebra instance-based approach employing a state-of-the-art U-Net framework. Internal five-fold cross-validation and external validation on an independent cohort not previously involved in training was performed. Quantitative validation of automatically planned screws was performed in comparison to corresponding manually planned screws by calculating the minimal absolute difference (MAD) of screw head and tip points, length and diameter, screw direction and Dice coefficient. Results were evaluated in relation to inter-rater and intra-rater variability of manual screw planning.Automated screw planning was successful in all targeted 130 screws. Compared with manually planned screws as a reference, mean MAD of automatically planned screws was 4.61±2.27 mm for screw head, 3.96±2.19 mm for tip points and 5.51±3.64° for screw direction. These differences were either statistically comparable or significantly smaller when compared with interrater variability of manual screw planning (p>.99 for head point and direction, p=.004 for tip point, respectively). Mean Dice coefficient of 0.61±0.16 indicated significantly greater agreement of automatic screws with the manual reference compared with interrater agreement (Dice 0.56±0.18, p<.001). Automatically planned screws were marginally shorter (MAD 3.4±3.2 mm) and thinner (MAD mean 0.3±0.6 mm) compared with the manual reference, but with statistical significance (p<.0001, respectively). Automatically planned screws were GR grade A in 96.2% in qualitative validation. Planning time was significantly shorter with the automatic approach (0:41 min vs. 6:41 min, p<.0001).We derived and validated a fully automated planning tool for lumbosacral pedicle screws using a CNN. Our validation showed noninferiority to manual screw planning and provided sufficient accuracy to facilitate and expedite the screw planning process. These results offer a high potential to improve workflows in spine surgery when integrated into navigation or robotic assistance systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助一定行采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
Orange应助张钦奎采纳,获得10
2秒前
5秒前
多晶1完成签到,获得积分10
5秒前
6秒前
xingxingxing发布了新的文献求助10
6秒前
7秒前
10秒前
SciGPT应助q792309106采纳,获得10
10秒前
11秒前
上官若男应助卖萌的秋田采纳,获得10
11秒前
袁超发布了新的文献求助30
12秒前
张雯思发布了新的文献求助10
12秒前
JJ发布了新的文献求助10
12秒前
旧梦完成签到 ,获得积分10
13秒前
tramp应助xiamu采纳,获得20
14秒前
xingxingxing完成签到,获得积分10
15秒前
甜甜的悲发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
张钦奎发布了新的文献求助10
16秒前
16秒前
zhjg发布了新的文献求助10
17秒前
阿超完成签到,获得积分10
17秒前
FashionBoy应助凪凪采纳,获得10
19秒前
19秒前
wanci应助jinzhen采纳,获得10
20秒前
13发布了新的文献求助10
20秒前
小蘑菇应助甜甜的悲采纳,获得10
22秒前
GL发布了新的文献求助10
23秒前
袁超完成签到,获得积分10
23秒前
23秒前
忧郁盼夏发布了新的文献求助10
24秒前
24秒前
q792309106完成签到,获得积分10
25秒前
乖猫要努力应助郭小宝采纳,获得20
25秒前
q792309106发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173