Development and validation of an automated planning tool for navigated lumbosacral pedicle screws using a convolutional neural network

卷积神经网络 医学 腰骶关节 手术计划 人工智能 计算机科学 放射科 外科
作者
Moritz Scherer,Lisa Kausch,Basem Ishak,Tobias Norajitra,Philipp Kickingereder,Karl Kiening,Andreas Unterberg,Klaus Maier‐Hein,Jan‐Oliver Neumann
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (10): 1666-1676 被引量:15
标识
DOI:10.1016/j.spinee.2022.05.002
摘要

Navigation and robotic systems have been increasingly applied to spinal instrumentation but dedicated screw planning is a time-consuming prerequisite to tap the full potential of these techniques.To develop and validate an automated planning tool for lumbosacral pedicle screw placement using a convolutional neural network (CNN) to facilitate the planning process.Retrospective analysis and processing of CT and screw planning data randomly selected from a consecutive registry of CT-navigated instrumentations from a single academic institution.Data from 179 cases was processed for CNN training and validation (155 for training, 24 for validation) leveraging a total of 1182 screws (1052 for training, 130 for validation).Quantitative and qualitative (Gertzbein-Robbins classification [GR]) validation via comparison of automatically and manually planned reference screws, inter-rater and intra-rater variability.Annotated data from CT-navigated instrumentation was used to train a CNN operating in a vertebra instance-based approach employing a state-of-the-art U-Net framework. Internal five-fold cross-validation and external validation on an independent cohort not previously involved in training was performed. Quantitative validation of automatically planned screws was performed in comparison to corresponding manually planned screws by calculating the minimal absolute difference (MAD) of screw head and tip points, length and diameter, screw direction and Dice coefficient. Results were evaluated in relation to inter-rater and intra-rater variability of manual screw planning.Automated screw planning was successful in all targeted 130 screws. Compared with manually planned screws as a reference, mean MAD of automatically planned screws was 4.61±2.27 mm for screw head, 3.96±2.19 mm for tip points and 5.51±3.64° for screw direction. These differences were either statistically comparable or significantly smaller when compared with interrater variability of manual screw planning (p>.99 for head point and direction, p=.004 for tip point, respectively). Mean Dice coefficient of 0.61±0.16 indicated significantly greater agreement of automatic screws with the manual reference compared with interrater agreement (Dice 0.56±0.18, p<.001). Automatically planned screws were marginally shorter (MAD 3.4±3.2 mm) and thinner (MAD mean 0.3±0.6 mm) compared with the manual reference, but with statistical significance (p<.0001, respectively). Automatically planned screws were GR grade A in 96.2% in qualitative validation. Planning time was significantly shorter with the automatic approach (0:41 min vs. 6:41 min, p<.0001).We derived and validated a fully automated planning tool for lumbosacral pedicle screws using a CNN. Our validation showed noninferiority to manual screw planning and provided sufficient accuracy to facilitate and expedite the screw planning process. These results offer a high potential to improve workflows in spine surgery when integrated into navigation or robotic assistance systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傻芙芙的完成签到,获得积分10
刚刚
沉默的康乃馨完成签到 ,获得积分10
1秒前
浮游应助张朝程采纳,获得20
1秒前
悠悠发布了新的文献求助10
1秒前
情怀应助坚强的笑天采纳,获得10
1秒前
KYTYYDS完成签到,获得积分10
1秒前
科研通AI6应助风净沙采纳,获得30
2秒前
Orange应助zycdx3906采纳,获得10
2秒前
ljj521314发布了新的文献求助10
3秒前
专一的白开水完成签到 ,获得积分10
3秒前
3秒前
JL完成签到 ,获得积分10
3秒前
4秒前
今后应助ylyla采纳,获得10
4秒前
actor2006发布了新的文献求助100
4秒前
打打应助鱼鱼采纳,获得10
4秒前
浮游应助陈思宏采纳,获得10
5秒前
6秒前
善良的采蓝完成签到,获得积分20
6秒前
万能图书馆应助丰富曼青采纳,获得10
6秒前
vax完成签到 ,获得积分10
6秒前
现实的艳一完成签到,获得积分10
6秒前
7秒前
multimodal发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
嘉悦发布了新的文献求助20
9秒前
阿呆发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
宋杓发布了新的文献求助10
12秒前
思源应助liu采纳,获得10
13秒前
ccc发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
luoqin发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461306
求助须知:如何正确求助?哪些是违规求助? 4566276
关于积分的说明 14304569
捐赠科研通 4492010
什么是DOI,文献DOI怎么找? 2460639
邀请新用户注册赠送积分活动 1449964
关于科研通互助平台的介绍 1425599