Distance education quality evaluation based on multigranularity probabilistic linguistic term sets and disappointment theory

计算机科学 范畴变量 质量(理念) 抓住 人工智能 概率逻辑 稳健性(进化) 机器学习 管理科学 生物化学 基因 认识论 哲学 经济 化学 程序设计语言
作者
Пэйдэ Лю,Xiyu Wang,Fei Teng,Yanwen Li,Fubin Wang
出处
期刊:Information Sciences [Elsevier]
卷期号:605: 159-181 被引量:21
标识
DOI:10.1016/j.ins.2022.05.034
摘要

Distance education quality evaluation is extremely important in improving the quality of education under COVID-19. As traditional teaching-quality evaluation methods are no longer applicable, it is crucial to construct effective evaluation methods. In the evaluation of distance education quality, decision-makers have different linguistic expression preferences, and the evaluation information may be biased due to an improper grasp of the problem. In addition, the correlation between the criteria of distance education quality evaluation is common, and the results of existing evaluation methods are quite different. In this paper, to compensate for these deficiencies, we utilize the multi-granularity probabilistic linguistic term set (MGPLTS), which can reflect the linguistic expression preference of decision-makers and the importance of linguistic terms, and propose a multi-criteria group decision-making (MCGDM) method. First, the dispersion and concentration degrees are proposed as the theoretical basis for judging the hesitancy of decision-makers' evaluation information, and the decision-maker weight adjustment model is constructed. To reflect the importance and correlation of criteria, the SWARA method and the CRITIC method are constructed as criteria weight methods. To obtain reliable decision results, decision-makers' psychological expectations are taken into account, the MULTIMOORA method is improved upon, and a new integration theory is proposed to improve its robustness. Finally, through an example case of distance education quality evaluation and comparison with other methods, the effectiveness, practicability and superiority of this method are verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助稳重幻嫣采纳,获得10
刚刚
2秒前
DrJiang发布了新的文献求助10
4秒前
GL应助辛勤的映波采纳,获得10
4秒前
耍酷冬卉发布了新的文献求助10
4秒前
fluency完成签到,获得积分10
6秒前
long发布了新的文献求助10
7秒前
7秒前
9秒前
爱睡午觉完成签到 ,获得积分10
10秒前
boyeer完成签到,获得积分10
11秒前
七言发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
杳鸢应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
十七应助科研通管家采纳,获得10
14秒前
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
杳鸢应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
杳鸢应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得30
14秒前
打打应助科研通管家采纳,获得10
14秒前
14秒前
和谐的曼云应助完美的紊采纳,获得10
16秒前
李爱国应助long采纳,获得10
17秒前
深情元蝶完成签到,获得积分10
18秒前
兔子发布了新的文献求助10
18秒前
七言完成签到,获得积分10
19秒前
encounter发布了新的文献求助10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482136
求助须知:如何正确求助?哪些是违规求助? 3071971
关于积分的说明 9125149
捐赠科研通 2763750
什么是DOI,文献DOI怎么找? 1516677
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700512