传统医学
针灸科
中医药
西医
替代医学
医学
病理
作者
Chen Zhao,Mengzhu Zhao,Liangzhen You,Rui Zheng,Yin Jiang,Xiaoyu Zhang,Ruijin Qiu,Yang Sun,Haie Pan,Tao He,Xuxu Wei,Zhineng Chen,Chen Zhao,Hongcai Shang
标识
DOI:10.1186/s13020-022-00617-4
摘要
Traditional Chinese medicine and Western medicine combination (TCM-WMC) increased the complexity of compounds ingested.To develop a method for screening hepatotoxic compounds in TCM-WMC based on chemical structures using artificial intelligence (AI) methods.Drug-induced liver injury (DILI) data was collected from the public databases and published literatures. The total dataset formed by DILI data was randomly divided into training set and test set at a ratio of 3:1 approximately. Machine learning models of SGD (Stochastic Gradient Descent), kNN (k-Nearest Neighbor), SVM (Support Vector Machine), NB (Naive Bayes), DT (Decision Tree), RF (Random Forest), ANN (Artificial Neural Network), AdaBoost, LR (Logistic Regression) and one deep learning model (deep belief network, DBN) were adopted to construct models for screening hepatotoxic compounds.Dataset of 2035 hepatotoxic compounds was collected in this research, in which 1505 compounds were as training set and 530 compounds were as test set. Results showed that RF obtained 0.838 of classification accuracy (CA), 0.827 of F1-score, 0.832 of Precision, 0.838 of Recall, 0.814 of area under the curve (AUC) on the training set and 0.767 of CA, 0.731 of F1, 0.739 of Precision, 0.767 of Recall, 0.739 of AUC on the test set, which was better than other eight machine learning methods. The DBN obtained 82.2% accuracy on the test set, which was higher than any other machine learning models on the test set.The DILI AI models were expected to effectively screen hepatotoxic compounds in TCM-WMC.
科研通智能强力驱动
Strongly Powered by AbleSci AI