Developing an artificial intelligence method for screening hepatotoxic compounds in traditional Chinese medicine and Western medicine combination

传统医学 针灸科 中医药 西医 替代医学 医学 病理
作者
Chen Zhao,Mengzhu Zhao,Liangzhen You,Rui Zheng,Yin Jiang,Xiaoyu Zhang,Ruijin Qiu,Yang Sun,Haie Pan,Tao He,Xuxu Wei,Zhineng Chen,Chen Zhao,Hongcai Shang
出处
期刊:Chinese Medicine [BioMed Central]
卷期号:17 (1) 被引量:7
标识
DOI:10.1186/s13020-022-00617-4
摘要

Traditional Chinese medicine and Western medicine combination (TCM-WMC) increased the complexity of compounds ingested.To develop a method for screening hepatotoxic compounds in TCM-WMC based on chemical structures using artificial intelligence (AI) methods.Drug-induced liver injury (DILI) data was collected from the public databases and published literatures. The total dataset formed by DILI data was randomly divided into training set and test set at a ratio of 3:1 approximately. Machine learning models of SGD (Stochastic Gradient Descent), kNN (k-Nearest Neighbor), SVM (Support Vector Machine), NB (Naive Bayes), DT (Decision Tree), RF (Random Forest), ANN (Artificial Neural Network), AdaBoost, LR (Logistic Regression) and one deep learning model (deep belief network, DBN) were adopted to construct models for screening hepatotoxic compounds.Dataset of 2035 hepatotoxic compounds was collected in this research, in which 1505 compounds were as training set and 530 compounds were as test set. Results showed that RF obtained 0.838 of classification accuracy (CA), 0.827 of F1-score, 0.832 of Precision, 0.838 of Recall, 0.814 of area under the curve (AUC) on the training set and 0.767 of CA, 0.731 of F1, 0.739 of Precision, 0.767 of Recall, 0.739 of AUC on the test set, which was better than other eight machine learning methods. The DBN obtained 82.2% accuracy on the test set, which was higher than any other machine learning models on the test set.The DILI AI models were expected to effectively screen hepatotoxic compounds in TCM-WMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助CSHAN采纳,获得10
刚刚
会飞的猪发布了新的文献求助10
刚刚
刚刚
拾七完成签到,获得积分10
1秒前
小蘑菇应助甜美的眼睛采纳,获得30
1秒前
狂野友儿发布了新的文献求助10
2秒前
3秒前
dgygy发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
Ray完成签到 ,获得积分10
6秒前
yexu完成签到,获得积分20
6秒前
6秒前
优雅魔镜完成签到 ,获得积分10
6秒前
7秒前
小二郎应助进取拼搏采纳,获得10
7秒前
9秒前
郑文涛发布了新的文献求助10
9秒前
谦让的牛排完成签到 ,获得积分10
9秒前
米糊发布了新的文献求助20
10秒前
邓青霞完成签到 ,获得积分10
11秒前
yy发布了新的文献求助10
11秒前
李健的小迷弟应助林一采纳,获得10
12秒前
紫心发布了新的文献求助10
12秒前
高大人发布了新的文献求助10
12秒前
12秒前
Heaven完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
13秒前
老实和尚完成签到,获得积分10
16秒前
超帅的心锁完成签到,获得积分20
17秒前
FIN应助司空豁采纳,获得30
17秒前
wcy完成签到 ,获得积分10
18秒前
科目三应助弦弦弦采纳,获得10
18秒前
19秒前
19秒前
19秒前
车访枫完成签到 ,获得积分10
21秒前
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122