Developing an artificial intelligence method for screening hepatotoxic compounds in traditional Chinese medicine and Western medicine combination

传统医学 针灸科 中医药 西医 替代医学 医学 病理
作者
Chen Zhao,Mengzhu Zhao,Liangzhen You,Rui Zheng,Yin Jiang,Xiaoyu Zhang,Ruijin Qiu,Yang Sun,Haie Pan,Tao He,Xuxu Wei,Zhineng Chen,Chen Zhao,Hongcai Shang
出处
期刊:Chinese Medicine [Springer Nature]
卷期号:17 (1) 被引量:7
标识
DOI:10.1186/s13020-022-00617-4
摘要

Traditional Chinese medicine and Western medicine combination (TCM-WMC) increased the complexity of compounds ingested.To develop a method for screening hepatotoxic compounds in TCM-WMC based on chemical structures using artificial intelligence (AI) methods.Drug-induced liver injury (DILI) data was collected from the public databases and published literatures. The total dataset formed by DILI data was randomly divided into training set and test set at a ratio of 3:1 approximately. Machine learning models of SGD (Stochastic Gradient Descent), kNN (k-Nearest Neighbor), SVM (Support Vector Machine), NB (Naive Bayes), DT (Decision Tree), RF (Random Forest), ANN (Artificial Neural Network), AdaBoost, LR (Logistic Regression) and one deep learning model (deep belief network, DBN) were adopted to construct models for screening hepatotoxic compounds.Dataset of 2035 hepatotoxic compounds was collected in this research, in which 1505 compounds were as training set and 530 compounds were as test set. Results showed that RF obtained 0.838 of classification accuracy (CA), 0.827 of F1-score, 0.832 of Precision, 0.838 of Recall, 0.814 of area under the curve (AUC) on the training set and 0.767 of CA, 0.731 of F1, 0.739 of Precision, 0.767 of Recall, 0.739 of AUC on the test set, which was better than other eight machine learning methods. The DBN obtained 82.2% accuracy on the test set, which was higher than any other machine learning models on the test set.The DILI AI models were expected to effectively screen hepatotoxic compounds in TCM-WMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星空完成签到 ,获得积分10
2秒前
嵐嵐发布了新的文献求助10
3秒前
4秒前
小白白又白完成签到,获得积分20
4秒前
5秒前
5秒前
布鲁鲁完成签到,获得积分20
5秒前
沐眿完成签到 ,获得积分10
7秒前
enchanted发布了新的文献求助10
7秒前
Up发布了新的文献求助10
9秒前
科研通AI2S应助sunishope采纳,获得10
10秒前
10秒前
嵐嵐完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
ggyyf完成签到,获得积分10
13秒前
搜集达人应助wx采纳,获得10
14秒前
14秒前
Meizoso发布了新的文献求助20
14秒前
15秒前
冰魄之弓发布了新的文献求助10
15秒前
SciGPT应助jiamso采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
个性归尘应助科研通管家采纳,获得20
16秒前
ferrycake应助科研通管家采纳,获得20
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
险胜应助科研通管家采纳,获得30
17秒前
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
良辰应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
yiluxiangbei发布了新的文献求助10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313969
求助须知:如何正确求助?哪些是违规求助? 2946329
关于积分的说明 8529696
捐赠科研通 2621983
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774