Spatiotemporal neural network for estimating surface NO2 concentrations over north China and their human health impact

北京 环境科学 过度拟合 空气污染 空间分布 污染 自然地理学 中国 均方误差 化学输运模型 气象学 地理 大气科学 人工神经网络 空气质量指数 统计 遥感 计算机科学 数学 化学 有机化学 考古 地质学 机器学习 生物 生态学
作者
Chengxin Zhang,Cheng Liu,Bo Li,Fei Zhao,Chunhui Zhao
出处
期刊:Environmental Pollution [Elsevier]
卷期号:307: 119510-119510 被引量:22
标识
DOI:10.1016/j.envpol.2022.119510
摘要

Atmospheric nitrogen dioxide (NO2) is an important reactive gas pollutant harmful to human health. The spatiotemporal coverage provided by traditional NO2 monitoring methods is insufficient, especially in the suburban and rural areas of north China, which have a high population density and experience severe air pollution. In this study, we implemented a spatiotemporal neural network (STNN) model to estimate surface NO2 from multiple sources of information, which included satellite and in situ measurements as well as meteorological and geographical data. The STNN predicted NO2 with high accuracy, with a coefficient of determination (R2) of 0.89 and a root mean squared error of 5.8 μg/m3 for sample-based 10-fold cross-validation. Based on the surface NO2 concentration determined by the STNN, we analyzed the spatial distribution and temporal trends of NO2 pollution in north China. We found substantial drops in surface NO2 concentrations ranging between 9.1% and 33.2% for large cities during the 2020 COVID-19 lockdown when compared to those in 2019. Moreover, we estimated the all-cause deaths attributed to NO2 exposure at a high spatial resolution of about 1 km, with totals of 6082, 4200, and 18,210 for Beijing, Tianjin, and Hebei Provinces in 2020, respectively. We observed remarkable regional differences in the health impacts due to NO2 among urban, suburban, and rural areas. Generally, the STNN model could incorporate spatiotemporal neighboring information and infer surface NO2 concentration with full coverage and high accuracy. Compared with machine learning regression techniques, STNN can effectively avoid model overfitting and simultaneously consider both spatial and temporal correlations of input variables using deep convolutional networks with residual blocks. The use of the proposed STNN model, as well as the surface NO2 dataset, can benefit air quality monitoring, forecasting, and health burden assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doc完成签到,获得积分10
1秒前
jim关闭了jim文献求助
2秒前
curtisness应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
葡萄成熟应助科研通管家采纳,获得10
3秒前
curtisness应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
葡萄成熟应助科研通管家采纳,获得10
3秒前
浅尝离白应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
浅尝离白应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
4秒前
CodeCraft应助嗑瓜子传奇采纳,获得10
4秒前
5秒前
科研通AI2S应助可耐的初翠采纳,获得10
8秒前
9秒前
LLLLLLLLLLLLL发布了新的文献求助10
9秒前
Ijaz发布了新的文献求助10
10秒前
秋水完成签到 ,获得积分10
10秒前
田様应助称心的又亦采纳,获得10
10秒前
11秒前
11秒前
bts4ever完成签到 ,获得积分10
12秒前
吉他配三弦完成签到,获得积分10
15秒前
17秒前
20秒前
LLLLLLLLLLLLL完成签到,获得积分10
22秒前
温柔丹南完成签到,获得积分10
25秒前
25秒前
李爱国应助典雅碧空采纳,获得10
30秒前
Hello应助Muttu采纳,获得10
32秒前
35秒前
闪闪落雁完成签到,获得积分10
36秒前
36秒前
123完成签到,获得积分20
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136127
求助须知:如何正确求助?哪些是违规求助? 2787029
关于积分的说明 7780244
捐赠科研通 2443154
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870