🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Garnet-Based Electrolytes for All-Solid-State Li-S Batteries

电解质 材料科学 多硫化物 润湿 离子电导率 锂(药物) 电化学 溶解 电极 陶瓷 电导率 化学工程 快离子导体 纳米技术 复合材料 化学 内分泌学 工程类 物理化学 医学
作者
Chengtian Zhou,Venkataraman Thangadurai
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (7): 722-722 被引量:1
标识
DOI:10.1149/ma2019-02/7/722
摘要

Lithium sulfur (Li-S) batteries have emerged as one of the most promising post LIBs technologies with a remarkably high theoretical energy density and abundance of elemental sulfur. Nonetheless, there are several problems associated with Li-S batteries such as safety hazard due to lithium dendrite formation and fast capacity decay due to polysulfide dissolution effect. 1 Employment of solid-state electrolytes is a promising strategy to address those issues. Among different solid-state Li-ion electrolytes, Li-garnet attracts a lot of attention as it has a wide electrochemical window (> 6 V vs. Li/Li + ), and high ionic conductivity (~ 1 mS cm -1 ) at room temperature. However, the application of garnet is hampered by its interfacial resistance against electrodes. 2 In order to the reduce the interfacial area specific resistance (ASR) of Li/garnet interface, we devised a surfactant-processed interlayer for ceramic electrolytes (SPICE) method which can uniformly deposit a layer of ZnO onto the garnet surface. This process improves the wetting of Li and reduces the interfacial ASR to 10 Ω cm 2 at room temperature. 3 Stable Galvanostatic cycling of Li/garnet/Li at current densities up to 0.5 mA cm −2 was conducted, which presents a compelling method to solve the Li/solid electrolyte interface problem. Another strategy we applied is incorporating garnet into polymer matrix to fabricate a flexible hybrid electrolyte. Polymer-based electrolytes possess low interfacial resistance due to its intimate contact with electrodes. 4 The hybrid electrolyte merging the merits of garnet and polymer has been successfully employed in all-solid-state Li-S batteries operating at room temperature. Toward improving the energy density of the battery, we are working on tuning the cathode structure to effectively load more sulfur active materials. In this presentation, the SPICE method to tailor the interfacial resistance and the performance of all-solid-state Li-S batteries based on hybrid electrolyte will be discussed. Manthiram, A.; Fu, Y.; Chung, S.; Zu, C.; Su, Y. Chem. Rev. 2014 , 114 , 11751-11787. Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; Mo, Y.; Thangadurai, V.; Wachsman, E.; Hu, L. Nat. Mater. 2016 , 16 , 572-579. Zhou, C.; Samson, A.; Hofstetter, K.; Thangadurai, V. Sustainable Energy & Fuels 2018 , 2 , 2165-2170. Zhou, C.; Bag, S.; Thangadurai, V. ACS Energy Lett. 2018 , 3 , 2181-2198.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑面斧关注了科研通微信公众号
刚刚
小仙完成签到,获得积分10
1秒前
科目三应助wanghao婷采纳,获得10
1秒前
2秒前
jasmine发布了新的文献求助10
2秒前
天天快乐应助ly采纳,获得10
3秒前
所所应助li采纳,获得10
3秒前
3秒前
端庄的心情完成签到 ,获得积分10
4秒前
知足常乐应助看文献了采纳,获得20
4秒前
潇洒的白猫关注了科研通微信公众号
5秒前
5秒前
6秒前
白诗南发布了新的文献求助10
6秒前
6秒前
小透明应助科研通管家采纳,获得20
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
种桃老总发布了新的文献求助10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
小龙虾应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
机灵柚子应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
泡泡糖发布了新的文献求助30
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得50
9秒前
科研通AI5应助科研通管家采纳,获得50
9秒前
852应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599200
求助须知:如何正确求助?哪些是违规求助? 3167785
关于积分的说明 9555302
捐赠科研通 2874336
什么是DOI,文献DOI怎么找? 1577961
邀请新用户注册赠送积分活动 741853
科研通“疑难数据库(出版商)”最低求助积分说明 724873