亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Point cloud registration and localization based on voxel plane features

点云 计算机科学 兰萨克 体素 人工智能 八叉树 计算机视觉 转化(遗传学) 帧(网络) 聚类分析 背景(考古学) 变换矩阵 姿势 平面(几何) 水准点(测量) 数学 图像(数学) 运动学 几何学 经典力学 地理 大地测量学 化学 考古 物理 生物化学 基因 电信
作者
Jianwei Li,Jiawang Zhan,Ting Zhou,Virgílio A. Bento,Qianfeng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 363-379 被引量:28
标识
DOI:10.1016/j.isprsjprs.2022.04.017
摘要

The 3D point cloud can directly provide accurate distance information, which facilitates many applications such as autonomous driving and environmental modeling. In order to construct more complete environmental information for these applications, it is necessary to register point clouds that are obtained from different poses. Registration after coarse localization is an effective method for understanding the pose of the device among the context of its environment. Here, a method for extracting plane features based on voxels is proposed and used for coarse registration and localization. The point cloud is divided into voxels by an octree, and voxels with the same plane characteristics are merged to obtain plane features. The candidate transformation matrix is calculated by using the corresponding plane set, and the RANSAC process with two-level transformation matrix verification, including quick verification and fine verification, is used to find the optimum transformation matrix from the candidates after clustering. Then, the coarse registration can be achieved. With the extracted plane features, a combined plane feature description of the point cloud frame is constructed to fulfill fast frame-level global localization. With the integration of the registration method presented in the current paper, pose localization can also be achieved. Experimental results show that the proposed method can achieve more than 85% successful registration rate with short time consumptions. This implies that the proposed method is more efficient than the benchmark method. Even when the map is large, frame-level localization is still fast, and has a successful localization rate of over 90%. The corresponding code are available at https://github.com/zhanjiawang/VPFBR-L .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LONG完成签到 ,获得积分10
6秒前
19秒前
Cmqq发布了新的文献求助10
24秒前
酷波er应助Cmqq采纳,获得10
31秒前
wanci应助harrywoo采纳,获得30
32秒前
科研通AI2S应助壮观百招采纳,获得10
1分钟前
lngenuo完成签到,获得积分10
1分钟前
1分钟前
文献王应助满意的世界采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
poppysss发布了新的文献求助30
1分钟前
壮观百招发布了新的文献求助10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
瑞雪发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
果果发布了新的文献求助10
2分钟前
NexusExplorer应助瑞雪采纳,获得10
2分钟前
雨相所至发布了新的文献求助10
2分钟前
希望天下0贩的0应助Cmqq采纳,获得10
2分钟前
2分钟前
雨相所至完成签到,获得积分10
2分钟前
善学以致用应助果果采纳,获得10
2分钟前
grize完成签到 ,获得积分10
2分钟前
shentaii完成签到,获得积分10
2分钟前
harrywoo发布了新的文献求助30
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
壮观百招完成签到,获得积分10
2分钟前
harrywoo完成签到,获得积分10
3分钟前
3分钟前
邢大志发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599780
求助须知:如何正确求助?哪些是违规求助? 4685524
关于积分的说明 14838545
捐赠科研通 4670729
什么是DOI,文献DOI怎么找? 2538225
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904