亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Point cloud registration and localization based on voxel plane features

点云 计算机科学 兰萨克 体素 人工智能 八叉树 计算机视觉 转化(遗传学) 帧(网络) 聚类分析 背景(考古学) 变换矩阵 姿势 平面(几何) 水准点(测量) 数学 图像(数学) 运动学 几何学 经典力学 地理 大地测量学 化学 考古 物理 生物化学 基因 电信
作者
Jianwei Li,Jiawang Zhan,Ting Zhou,Virgílio A. Bento,Qianfeng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 363-379 被引量:28
标识
DOI:10.1016/j.isprsjprs.2022.04.017
摘要

The 3D point cloud can directly provide accurate distance information, which facilitates many applications such as autonomous driving and environmental modeling. In order to construct more complete environmental information for these applications, it is necessary to register point clouds that are obtained from different poses. Registration after coarse localization is an effective method for understanding the pose of the device among the context of its environment. Here, a method for extracting plane features based on voxels is proposed and used for coarse registration and localization. The point cloud is divided into voxels by an octree, and voxels with the same plane characteristics are merged to obtain plane features. The candidate transformation matrix is calculated by using the corresponding plane set, and the RANSAC process with two-level transformation matrix verification, including quick verification and fine verification, is used to find the optimum transformation matrix from the candidates after clustering. Then, the coarse registration can be achieved. With the extracted plane features, a combined plane feature description of the point cloud frame is constructed to fulfill fast frame-level global localization. With the integration of the registration method presented in the current paper, pose localization can also be achieved. Experimental results show that the proposed method can achieve more than 85% successful registration rate with short time consumptions. This implies that the proposed method is more efficient than the benchmark method. Even when the map is large, frame-level localization is still fast, and has a successful localization rate of over 90%. The corresponding code are available at https://github.com/zhanjiawang/VPFBR-L .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mirzat107发布了新的文献求助10
2秒前
April完成签到 ,获得积分10
3秒前
Kkk完成签到 ,获得积分10
3秒前
5秒前
5秒前
所所应助科研通管家采纳,获得10
5秒前
GPTea应助科研通管家采纳,获得20
5秒前
6秒前
黄小柒完成签到,获得积分10
8秒前
开心快乐水完成签到 ,获得积分10
13秒前
13秒前
敏敏9813完成签到,获得积分10
17秒前
山羊8201发布了新的文献求助10
17秒前
欢喜的毛豆完成签到 ,获得积分10
27秒前
白雅颂完成签到 ,获得积分10
33秒前
44秒前
56秒前
56秒前
朝闻道完成签到 ,获得积分10
57秒前
1分钟前
CRUSADER发布了新的文献求助10
1分钟前
1分钟前
平淡如天完成签到,获得积分10
1分钟前
Paris发布了新的文献求助10
1分钟前
CRUSADER完成签到,获得积分10
1分钟前
陶醉的钢笔完成签到 ,获得积分0
1分钟前
科研通AI6应助刘显贵采纳,获得10
1分钟前
FashionBoy应助赵悦采纳,获得10
1分钟前
坚定的一德完成签到,获得积分20
1分钟前
老实的南风完成签到 ,获得积分10
1分钟前
1分钟前
HaoZhang发布了新的文献求助10
1分钟前
sweetbear发布了新的文献求助10
1分钟前
陈竺完成签到 ,获得积分10
1分钟前
沉默寻凝完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
NexusExplorer应助yzkyg采纳,获得10
1分钟前
可爱的函函应助感谢采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582179
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500155
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795