Point cloud registration and localization based on voxel plane features

点云 计算机科学 兰萨克 体素 人工智能 八叉树 计算机视觉 转化(遗传学) 帧(网络) 聚类分析 背景(考古学) 变换矩阵 姿势 平面(几何) 水准点(测量) 数学 图像(数学) 运动学 几何学 经典力学 地理 大地测量学 化学 考古 物理 生物化学 基因 电信
作者
Jianwei Li,Jiawang Zhan,Ting Zhou,Virgílio A. Bento,Qianfeng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 363-379 被引量:28
标识
DOI:10.1016/j.isprsjprs.2022.04.017
摘要

The 3D point cloud can directly provide accurate distance information, which facilitates many applications such as autonomous driving and environmental modeling. In order to construct more complete environmental information for these applications, it is necessary to register point clouds that are obtained from different poses. Registration after coarse localization is an effective method for understanding the pose of the device among the context of its environment. Here, a method for extracting plane features based on voxels is proposed and used for coarse registration and localization. The point cloud is divided into voxels by an octree, and voxels with the same plane characteristics are merged to obtain plane features. The candidate transformation matrix is calculated by using the corresponding plane set, and the RANSAC process with two-level transformation matrix verification, including quick verification and fine verification, is used to find the optimum transformation matrix from the candidates after clustering. Then, the coarse registration can be achieved. With the extracted plane features, a combined plane feature description of the point cloud frame is constructed to fulfill fast frame-level global localization. With the integration of the registration method presented in the current paper, pose localization can also be achieved. Experimental results show that the proposed method can achieve more than 85% successful registration rate with short time consumptions. This implies that the proposed method is more efficient than the benchmark method. Even when the map is large, frame-level localization is still fast, and has a successful localization rate of over 90%. The corresponding code are available at https://github.com/zhanjiawang/VPFBR-L .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睡觉的猫发布了新的文献求助10
2秒前
LSH970829完成签到,获得积分10
2秒前
小鱼完成签到 ,获得积分10
3秒前
搜集达人应助zly采纳,获得10
3秒前
简啦啦发布了新的文献求助10
3秒前
aiai完成签到 ,获得积分10
4秒前
人生如梦完成签到,获得积分10
5秒前
水深三英尺完成签到,获得积分10
6秒前
sparks完成签到,获得积分10
8秒前
8秒前
9秒前
新一完成签到 ,获得积分10
9秒前
bkagyin应助Allen采纳,获得10
10秒前
大个应助华莉变身采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
乔婉完成签到,获得积分20
12秒前
学术菜鸡123发布了新的文献求助200
13秒前
13秒前
zhanglin发布了新的文献求助10
15秒前
天才J完成签到,获得积分10
16秒前
ZOE关注了科研通微信公众号
16秒前
adam完成签到,获得积分10
17秒前
一一应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
Yu应助科研通管家采纳,获得20
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
一一应助科研通管家采纳,获得10
19秒前
一一应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得30
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
一一应助科研通管家采纳,获得10
19秒前
19秒前
一一应助科研通管家采纳,获得10
20秒前
香蕉诗蕊应助科研通管家采纳,获得10
20秒前
21秒前
乐空思应助乔婉采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851