亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Point cloud registration and localization based on voxel plane features

点云 计算机科学 兰萨克 体素 人工智能 八叉树 计算机视觉 转化(遗传学) 帧(网络) 聚类分析 背景(考古学) 变换矩阵 姿势 平面(几何) 水准点(测量) 数学 图像(数学) 运动学 几何学 经典力学 地理 大地测量学 化学 考古 物理 生物化学 基因 电信
作者
Jianwei Li,Jiawang Zhan,Ting Zhou,Virgílio A. Bento,Qianfeng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 363-379 被引量:28
标识
DOI:10.1016/j.isprsjprs.2022.04.017
摘要

The 3D point cloud can directly provide accurate distance information, which facilitates many applications such as autonomous driving and environmental modeling. In order to construct more complete environmental information for these applications, it is necessary to register point clouds that are obtained from different poses. Registration after coarse localization is an effective method for understanding the pose of the device among the context of its environment. Here, a method for extracting plane features based on voxels is proposed and used for coarse registration and localization. The point cloud is divided into voxels by an octree, and voxels with the same plane characteristics are merged to obtain plane features. The candidate transformation matrix is calculated by using the corresponding plane set, and the RANSAC process with two-level transformation matrix verification, including quick verification and fine verification, is used to find the optimum transformation matrix from the candidates after clustering. Then, the coarse registration can be achieved. With the extracted plane features, a combined plane feature description of the point cloud frame is constructed to fulfill fast frame-level global localization. With the integration of the registration method presented in the current paper, pose localization can also be achieved. Experimental results show that the proposed method can achieve more than 85% successful registration rate with short time consumptions. This implies that the proposed method is more efficient than the benchmark method. Even when the map is large, frame-level localization is still fast, and has a successful localization rate of over 90%. The corresponding code are available at https://github.com/zhanjiawang/VPFBR-L .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
649981108完成签到,获得积分10
16秒前
16秒前
研友_892kOL完成签到,获得积分10
32秒前
脑洞疼应助李小猫采纳,获得10
48秒前
54秒前
李小猫完成签到,获得积分10
56秒前
58秒前
李小猫发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
3分钟前
3分钟前
Tiger完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Ma发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI5应助Ma采纳,获得10
4分钟前
彼岸花开发布了新的文献求助10
4分钟前
5分钟前
易四夕发布了新的文献求助10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Ma发布了新的文献求助10
6分钟前
1234完成签到,获得积分10
6分钟前
岁和景明完成签到 ,获得积分10
6分钟前
科研通AI5应助Ma采纳,获得10
6分钟前
西蓝花香菜完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Ma发布了新的文献求助10
8分钟前
8分钟前
科研通AI5应助Ma采纳,获得10
8分钟前
忧伤的绍辉完成签到 ,获得积分10
8分钟前
隐形曼青应助易四夕采纳,获得10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167214
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638