Point cloud registration and localization based on voxel plane features

点云 计算机科学 兰萨克 体素 人工智能 八叉树 计算机视觉 转化(遗传学) 帧(网络) 聚类分析 背景(考古学) 变换矩阵 姿势 平面(几何) 水准点(测量) 数学 图像(数学) 运动学 地理 几何学 大地测量学 考古 化学 物理 基因 电信 经典力学 生物化学
作者
Jianwei Li,Jiawang Zhan,Ting Zhou,Virgílio A. Bento,Qianfeng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 363-379 被引量:20
标识
DOI:10.1016/j.isprsjprs.2022.04.017
摘要

The 3D point cloud can directly provide accurate distance information, which facilitates many applications such as autonomous driving and environmental modeling. In order to construct more complete environmental information for these applications, it is necessary to register point clouds that are obtained from different poses. Registration after coarse localization is an effective method for understanding the pose of the device among the context of its environment. Here, a method for extracting plane features based on voxels is proposed and used for coarse registration and localization. The point cloud is divided into voxels by an octree, and voxels with the same plane characteristics are merged to obtain plane features. The candidate transformation matrix is calculated by using the corresponding plane set, and the RANSAC process with two-level transformation matrix verification, including quick verification and fine verification, is used to find the optimum transformation matrix from the candidates after clustering. Then, the coarse registration can be achieved. With the extracted plane features, a combined plane feature description of the point cloud frame is constructed to fulfill fast frame-level global localization. With the integration of the registration method presented in the current paper, pose localization can also be achieved. Experimental results show that the proposed method can achieve more than 85% successful registration rate with short time consumptions. This implies that the proposed method is more efficient than the benchmark method. Even when the map is large, frame-level localization is still fast, and has a successful localization rate of over 90%. The corresponding code are available at https://github.com/zhanjiawang/VPFBR-L .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一念来回完成签到,获得积分10
1秒前
小魏不学无术完成签到,获得积分10
1秒前
哆唻发布了新的文献求助10
1秒前
半岛铁盒完成签到,获得积分10
1秒前
大模型应助dehai li采纳,获得10
2秒前
chx完成签到,获得积分10
2秒前
2秒前
搞怪烨伟完成签到,获得积分10
3秒前
芝麻糊了发布了新的文献求助10
3秒前
4秒前
嗯哼发布了新的文献求助10
4秒前
whyee完成签到,获得积分10
5秒前
5秒前
5秒前
WXR完成签到,获得积分10
6秒前
梓墨完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
Dany发布了新的文献求助10
8秒前
chx发布了新的文献求助30
8秒前
8秒前
立青发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
袁思宇发布了新的文献求助10
11秒前
思源应助英俊若灵采纳,获得10
11秒前
pupuply发布了新的文献求助10
11秒前
老实数据线完成签到,获得积分10
12秒前
momo完成签到,获得积分10
12秒前
12秒前
12秒前
1234567890l发布了新的文献求助10
13秒前
完美世界应助nenoaowu采纳,获得10
13秒前
爰采唐矣完成签到,获得积分20
13秒前
单纯傲安完成签到,获得积分10
13秒前
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221700
求助须知:如何正确求助?哪些是违规求助? 2870410
关于积分的说明 8170405
捐赠科研通 2537357
什么是DOI,文献DOI怎么找? 1369382
科研通“疑难数据库(出版商)”最低求助积分说明 645496
邀请新用户注册赠送积分活动 619179