Point cloud registration and localization based on voxel plane features

点云 计算机科学 兰萨克 体素 人工智能 八叉树 计算机视觉 转化(遗传学) 帧(网络) 聚类分析 背景(考古学) 变换矩阵 姿势 平面(几何) 水准点(测量) 数学 图像(数学) 运动学 几何学 经典力学 地理 大地测量学 化学 考古 物理 生物化学 基因 电信
作者
Jianwei Li,Jiawang Zhan,Ting Zhou,Virgílio A. Bento,Qianfeng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 363-379 被引量:28
标识
DOI:10.1016/j.isprsjprs.2022.04.017
摘要

The 3D point cloud can directly provide accurate distance information, which facilitates many applications such as autonomous driving and environmental modeling. In order to construct more complete environmental information for these applications, it is necessary to register point clouds that are obtained from different poses. Registration after coarse localization is an effective method for understanding the pose of the device among the context of its environment. Here, a method for extracting plane features based on voxels is proposed and used for coarse registration and localization. The point cloud is divided into voxels by an octree, and voxels with the same plane characteristics are merged to obtain plane features. The candidate transformation matrix is calculated by using the corresponding plane set, and the RANSAC process with two-level transformation matrix verification, including quick verification and fine verification, is used to find the optimum transformation matrix from the candidates after clustering. Then, the coarse registration can be achieved. With the extracted plane features, a combined plane feature description of the point cloud frame is constructed to fulfill fast frame-level global localization. With the integration of the registration method presented in the current paper, pose localization can also be achieved. Experimental results show that the proposed method can achieve more than 85% successful registration rate with short time consumptions. This implies that the proposed method is more efficient than the benchmark method. Even when the map is large, frame-level localization is still fast, and has a successful localization rate of over 90%. The corresponding code are available at https://github.com/zhanjiawang/VPFBR-L .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到 ,获得积分10
刚刚
顾矜应助乖猫要努力采纳,获得10
1秒前
传奇3应助yw采纳,获得10
1秒前
刘轩雨发布了新的文献求助10
1秒前
CodeCraft应助咕咕咕采纳,获得10
1秒前
SciGPT应助Till采纳,获得10
2秒前
皇甫锾铬发布了新的文献求助10
2秒前
2秒前
3秒前
猪猪hero应助Levy采纳,获得10
3秒前
大模型应助Zoe采纳,获得30
3秒前
唐三发布了新的文献求助10
3秒前
LIUAiwei完成签到,获得积分10
3秒前
瓅芩发布了新的文献求助150
3秒前
风清扬应助supertkeb采纳,获得30
3秒前
英俊的铭应助Vanessa采纳,获得10
3秒前
充电宝应助小郭子采纳,获得10
4秒前
充电宝应助栗子采纳,获得10
4秒前
个性的饼干完成签到,获得积分10
4秒前
4秒前
rss完成签到,获得积分10
5秒前
桌子不齐完成签到,获得积分10
5秒前
5秒前
galioo3000发布了新的文献求助10
5秒前
xmy发布了新的文献求助10
6秒前
斯文败类应助wang采纳,获得10
7秒前
人文发布了新的文献求助100
7秒前
科研通AI6应助路人甲采纳,获得10
7秒前
7秒前
小七完成签到,获得积分10
7秒前
妞妞发布了新的文献求助10
8秒前
8秒前
Inspiring发布了新的文献求助10
9秒前
大个应助钮小童采纳,获得10
9秒前
9秒前
科研通AI2S应助Pendulium采纳,获得10
10秒前
10秒前
DIDI完成签到,获得积分10
10秒前
11秒前
TP完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721