Novel finite-time adaptive sliding mode tracking control for disturbed mechanical systems

控制理论(社会学) 控制器(灌溉) 滑模控制 参数统计 奇点 自适应控制 整体滑动模态 计算机科学 积分器 工程类 数学 控制(管理) 物理 人工智能 非线性系统 量子力学 生物 统计 农学 数学分析 计算机网络 带宽(计算)
作者
Qijia Yao,Hadi Jahanshahi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 8868-8889 被引量:4
标识
DOI:10.1177/09544062221091530
摘要

In this paper, the finite-time tracking control problem of mechanical systems subject to model uncertainties and external disturbances is investigated. A new type of finite-time adaptive sliding mode control approach is proposed based on a novel integral sliding mode surface and a novel parametric adaptation mechanism. The integral sliding mode surface is originally designed by utilizing the adding a power integrator technique. The parametric adaptation mechanism is developed by using a single adaptive updating law to estimate the square of the upper bound of the lumped uncertain term. As compared with the most existing studies, the distinctive features of the proposed controller are threefold. (1) Benefiting from the novel integral sliding mode surface, the proposed controller has no singularity problem inherently existing in the terminal sliding mode control. (2) Owing to the use of novel parametric adaptation mechanism, the proposed controller is smooth and the unexpected chattering phenomenon is significantly attenuated. Moreover, the proposed controller is structurally simple and requires relatively few online calculations, which makes it affordable for practical applications. (3) The practical finite-time stability of the overall closed-loop system is strictly proved. The proposed controller can ensure the position and velocity tracking errors stabilize to the adjustable small neighborhoods around the origin in finite time. Lastly, the effectiveness and advantages of the proposed control approach are illustrated through simulations and comparisons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚定的又莲完成签到 ,获得积分10
刚刚
刚刚
隐形皮卡丘完成签到 ,获得积分10
2秒前
路人完成签到,获得积分20
2秒前
Ssyong完成签到 ,获得积分10
2秒前
迷路睫毛发布了新的文献求助30
2秒前
ddd发布了新的文献求助10
3秒前
南城忆潇湘完成签到,获得积分10
3秒前
3秒前
elivsZhou完成签到,获得积分10
4秒前
小新完成签到,获得积分10
4秒前
丰富的灵珊完成签到,获得积分10
5秒前
小核桃完成签到 ,获得积分10
5秒前
azhu发布了新的文献求助10
5秒前
慕青应助stst采纳,获得10
5秒前
5秒前
Balance Man发布了新的文献求助30
6秒前
凤迎雪飘完成签到,获得积分10
6秒前
舒适的幻桃完成签到,获得积分10
6秒前
与可完成签到,获得积分10
7秒前
better完成签到,获得积分10
7秒前
7秒前
橘子发布了新的文献求助10
7秒前
7秒前
归于水云身完成签到,获得积分10
8秒前
8秒前
LuoYR@SZU完成签到,获得积分10
9秒前
哇哈哈哈哈哈完成签到,获得积分10
9秒前
scvrl完成签到,获得积分10
9秒前
better发布了新的文献求助10
9秒前
彭于晏应助英俊亦巧采纳,获得20
9秒前
路人发布了新的文献求助10
10秒前
zhong完成签到,获得积分10
10秒前
CipherSage应助低温少年采纳,获得10
10秒前
小马甲应助adeno采纳,获得10
10秒前
WLM完成签到,获得积分10
10秒前
司空笑白发布了新的文献求助10
10秒前
犹豫的向南完成签到,获得积分10
10秒前
沐沐完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959