Novel finite-time adaptive sliding mode tracking control for disturbed mechanical systems

控制理论(社会学) 控制器(灌溉) 滑模控制 参数统计 奇点 自适应控制 整体滑动模态 计算机科学 积分器 工程类 数学 控制(管理) 物理 人工智能 非线性系统 量子力学 生物 统计 农学 数学分析 计算机网络 带宽(计算)
作者
Qijia Yao,Hadi Jahanshahi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 8868-8889 被引量:4
标识
DOI:10.1177/09544062221091530
摘要

In this paper, the finite-time tracking control problem of mechanical systems subject to model uncertainties and external disturbances is investigated. A new type of finite-time adaptive sliding mode control approach is proposed based on a novel integral sliding mode surface and a novel parametric adaptation mechanism. The integral sliding mode surface is originally designed by utilizing the adding a power integrator technique. The parametric adaptation mechanism is developed by using a single adaptive updating law to estimate the square of the upper bound of the lumped uncertain term. As compared with the most existing studies, the distinctive features of the proposed controller are threefold. (1) Benefiting from the novel integral sliding mode surface, the proposed controller has no singularity problem inherently existing in the terminal sliding mode control. (2) Owing to the use of novel parametric adaptation mechanism, the proposed controller is smooth and the unexpected chattering phenomenon is significantly attenuated. Moreover, the proposed controller is structurally simple and requires relatively few online calculations, which makes it affordable for practical applications. (3) The practical finite-time stability of the overall closed-loop system is strictly proved. The proposed controller can ensure the position and velocity tracking errors stabilize to the adjustable small neighborhoods around the origin in finite time. Lastly, the effectiveness and advantages of the proposed control approach are illustrated through simulations and comparisons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助单薄醉卉采纳,获得10
1秒前
彩色铅笔完成签到,获得积分10
1秒前
万能图书馆应助多吃青菜采纳,获得30
2秒前
2秒前
yz完成签到,获得积分10
2秒前
2秒前
lzzk完成签到,获得积分10
2秒前
dr.du完成签到 ,获得积分10
2秒前
淡淡土豆应助天道酬勤采纳,获得10
2秒前
COIN_77完成签到 ,获得积分10
3秒前
不二子完成签到,获得积分10
3秒前
3秒前
学术菜鸡完成签到,获得积分10
3秒前
小蘑菇应助小李呀采纳,获得10
3秒前
3秒前
早岁完成签到,获得积分10
4秒前
5秒前
心碎的黄焖鸡完成签到 ,获得积分10
5秒前
不二子发布了新的文献求助10
5秒前
5秒前
6秒前
Infinite完成签到 ,获得积分10
6秒前
小米的稻田完成签到 ,获得积分10
6秒前
安妤完成签到,获得积分10
6秒前
Hotpoter完成签到,获得积分10
6秒前
七七七完成签到,获得积分10
6秒前
肉肉的小屋完成签到,获得积分10
6秒前
最专业完成签到,获得积分10
6秒前
高高烙完成签到,获得积分10
6秒前
student完成签到,获得积分10
6秒前
隐形曼青应助cicy采纳,获得10
6秒前
6秒前
vivi发布了新的文献求助10
6秒前
crazycathaha发布了新的文献求助10
6秒前
玖念发布了新的文献求助10
7秒前
讨厌胡萝卜完成签到,获得积分10
7秒前
一枝杷枇完成签到,获得积分10
7秒前
zas完成签到,获得积分10
7秒前
五條小羊完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516775
求助须知:如何正确求助?哪些是违规求助? 4609657
关于积分的说明 14517657
捐赠科研通 4546551
什么是DOI,文献DOI怎么找? 2491236
邀请新用户注册赠送积分活动 1472956
关于科研通互助平台的介绍 1444911