Novel finite-time adaptive sliding mode tracking control for disturbed mechanical systems

控制理论(社会学) 控制器(灌溉) 滑模控制 参数统计 奇点 自适应控制 整体滑动模态 计算机科学 积分器 工程类 数学 控制(管理) 物理 人工智能 非线性系统 量子力学 生物 统计 农学 数学分析 计算机网络 带宽(计算)
作者
Qijia Yao,Hadi Jahanshahi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 8868-8889 被引量:4
标识
DOI:10.1177/09544062221091530
摘要

In this paper, the finite-time tracking control problem of mechanical systems subject to model uncertainties and external disturbances is investigated. A new type of finite-time adaptive sliding mode control approach is proposed based on a novel integral sliding mode surface and a novel parametric adaptation mechanism. The integral sliding mode surface is originally designed by utilizing the adding a power integrator technique. The parametric adaptation mechanism is developed by using a single adaptive updating law to estimate the square of the upper bound of the lumped uncertain term. As compared with the most existing studies, the distinctive features of the proposed controller are threefold. (1) Benefiting from the novel integral sliding mode surface, the proposed controller has no singularity problem inherently existing in the terminal sliding mode control. (2) Owing to the use of novel parametric adaptation mechanism, the proposed controller is smooth and the unexpected chattering phenomenon is significantly attenuated. Moreover, the proposed controller is structurally simple and requires relatively few online calculations, which makes it affordable for practical applications. (3) The practical finite-time stability of the overall closed-loop system is strictly proved. The proposed controller can ensure the position and velocity tracking errors stabilize to the adjustable small neighborhoods around the origin in finite time. Lastly, the effectiveness and advantages of the proposed control approach are illustrated through simulations and comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助fangzhang采纳,获得10
1秒前
2秒前
jenlaka完成签到,获得积分10
2秒前
3秒前
核桃应助tdtk采纳,获得10
3秒前
打打应助慕容雅柏采纳,获得10
3秒前
3秒前
劳永杰发布了新的文献求助10
4秒前
5秒前
今后应助hgl采纳,获得10
5秒前
5秒前
5秒前
NexusExplorer应助licrazy采纳,获得10
6秒前
娜娜酱关注了科研通微信公众号
6秒前
和谐火车发布了新的文献求助10
7秒前
8秒前
爆米花应助老孔采纳,获得30
9秒前
Palm完成签到,获得积分10
9秒前
刻苦海露发布了新的文献求助10
9秒前
开放穆发布了新的文献求助10
9秒前
贾克斯发布了新的文献求助10
11秒前
LiangTie发布了新的文献求助10
11秒前
11秒前
12发布了新的文献求助10
12秒前
13秒前
13秒前
抠脚大汉完成签到,获得积分10
15秒前
15秒前
Jony完成签到,获得积分10
16秒前
Jenny发布了新的文献求助10
17秒前
慕容雅柏发布了新的文献求助10
17秒前
郭子仪完成签到,获得积分20
18秒前
李健的小迷弟应助贾克斯采纳,获得10
18秒前
bmhs2017应助fangzhang采纳,获得10
19秒前
完美世界应助研友_89eRG8采纳,获得10
19秒前
鲁远望发布了新的文献求助10
20秒前
20秒前
LiangTie完成签到,获得积分20
21秒前
22秒前
和谐火车完成签到,获得积分10
24秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384621
求助须知:如何正确求助?哪些是违规求助? 4507409
关于积分的说明 14028029
捐赠科研通 4417130
什么是DOI,文献DOI怎么找? 2426268
邀请新用户注册赠送积分活动 1419058
关于科研通互助平台的介绍 1397395